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C++ Keywords

alignas alignof and and_eq asm auto
bitand bitor bool break case catch
char char8_t char16_t char32_t class compl

concept const consteval constexpr constinit const_cast
continue co_await co_return co_yield decltype default
delete do double dynamic_cast else enum

explicit export extern false float for
friend goto if inline int long
mutable namespace new noexcept not not_eq
nullptr operator or or_eq private protected
public register reinterpret_cast requires return short
signed sizeof static static_assert static_cast struct
switch template this thread_local throw true
try typedef typeid typename union unsigned

using virtual void volatile wchar_t while
xor xor_eq
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Operator Precedence

Prec. Operator Assoc.
1 () [] -> . :: ++ −− (postfix) L→R
2 ! ∼ ++ −− (prefix) - + * & R→L
3 ->* .* L→R
4 * / % L→R
5 + - L→R
6 « » L→R
7 < <= > >= L→R
8 == != L→R
9 & L→R
10 ^ L→R
11 | L→R
12 && L→R
13 || L→R
14 ? : R→L
15 = += -= *= /= %= &= ^= |= «= »= R→L
16 , L→R
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Memory

Memory Region Characteristics

Stack Automatic stack frames created for each
method call to hold local variables

Heap Dynamic memory pool for manual allocation
and lifetime control.

Dynamic Allocation [manual] malloc/free

Global/Static [Auto] Global variables/constants that per-
sist throughout the lifetime of the program.

Constant [Auto] constants/read-only
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Example

1 void f1 ()
2 {
3 int *p = new int [5];
4 int variable = 10;
5 }

1 0000000000001149 <_Z2f1v >:a
2 1149: f3 0f 1e fa endbr64
3 114d: 55 push %rbp
4 114e: 48 89 e5 mov %rsp ,%rbp
5 1151: 48 83 ec 10 sub $0x10 ,%rsp
6 1155: bf 14 00 00 00 mov $0x14 ,%edi
7 115a: e8 f1 fe ff ff call 1050 <_Znam@plt >
8 115f: 48 89 45 f8 mov %rax ,-0x8(%rbp)
9 1163: c7 45 f4 0a 00 00 00 movl $0xa ,-0xc(%rbp)

10 116a: 90 nop
11 116b: c9 leave
12 116c: c3 ret
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Example (Cont.)

1 void f1 ()
2 {
3 int *p = new int [5];
4 delete [] p;
5 }

1 0000000000001149 <_Z2f1v >:
2 1169: f3 0f 1e fa endbr64
3 116d: 55 push %rbp
4 116e: 48 89 e5 mov %rsp ,%rbp
5 1171: 48 83 ec 10 sub $0x10 ,%rsp
6 1175: bf 14 00 00 00 mov $0x14 ,%edi
7 117a: e8 e1 fe ff ff call 1060 <_Znam@plt >
8 117f: 48 89 45 f8 mov %rax ,-0x8(%rbp)
9 1183: 48 83 7d f8 00 cmpq $0x0 ,-0x8(%rbp)

10 1188: 74 0c je 1196 <_Z2f1v +0x2d >
11 118a: 48 8b 45 f8 mov -0x8(%rbp),%rax
12 118e: 48 89 c7 mov %rax ,%rdi
13 1191: e8 da fe ff ff call 1070 <_ZdaPv@plt >
14 1196: 90 nop
15 1197: c9 leave
16 1198: c3 ret
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Pointer / Reference

1 int vari = 3100;
2 int *ptr = &vari; // pointer
3 int &ref = vari; // reference
4 *ptr = 3200;

Differences
• Pointer: Can be reassigned, can be null, has separate memory.

• Reference: Must be initialized, cannot be reassigned, alias to existing
variable.

The meaning of *

• int *ptr = &vari; Type specifier in declarations (store address).

• *ptr = 3200; Dereference operator in expressions.
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Multi-level Pointer

1 #include <cstdio >
2 void calc (int a,int b,int **f1 ,int **f2)
3 {
4 **f1 = a + b;**f2 = a - b;
5 int *temp = *f1;*f1 = *f2;*f2 = temp;
6 }
7 int main ()
8 {
9 int a = 5,b = 3,x,y;

10 int *px = &x,*py = &y;
11 calc (a,b,&px ,&py);
12 printf ("%d␣%d\n",x,y);
13 return 0;
14 }

Answer

1 8 2
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Swap

1 #include <cstdio >
2 void swap1 (int *x,int *y) {int tmp = *x;*x = *y;*y = tmp;}
3 void swap2 (int *x,int *y) {int *tmp = x;x = y;y = tmp;}
4 void swap3 (int **x,int **y) {int *tmp = *x;*x = *y;*y = tmp;}
5 void swap4 (int *&x,int *&y) {int *tmp = x;x = y;y = tmp;}
6 int main ()
7 {
8 int a = 5,b = 3;
9 swap1 (&a,&b);

10 printf ("%d␣%d\n",a,b);
11 a = 5,b = 3;
12 swap2 (&a,&b);
13 printf ("%d␣%d\n",a,b);
14 a = 5,b = 3;
15 int *pa = &a,*pb = &b;
16 swap3 (&pa ,&pb);
17 printf ("%d␣%d␣%d␣%d\n",a,b,*pa ,*pb);
18 a = 5,b = 3;
19 pa = &a;pb = &b;
20 swap4 (pa,pb);
21 printf ("%d␣%d␣%d␣%d\n",a,b,*pa ,*pb);
22 return 0;
23 }
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Swap (cont.)

Answer

1 3 5
2 5 3
3 5 3 3 5
4 5 3 3 5

Hint
Drawing memory diagrams can greatly assist in solving such
problems!
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Array

1 int arr[5] = {0,1,3,4,7};
2 *(arr + 3) = 5;
3 for (int i = 0;i < 5;++i) printf ("The␣%d-th:␣%d\n",i,*(arr + i));

1 The 0-th: 0
2 The 1-th: 1
3 The 2-th: 3
4 The 3-th: 5
5 The 4-th: 7
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Array (Cont.)

1 #include <cstdio >
2 /* declaration here */
3 int main ()
4 {
5 char arr [2][3] = {{’a’,’b’,’c’},{’e’,’f’,’g’}};
6 calc (arr);
7 return 0;
8 }

Which of the following function declarations are correct?
A) void calc (char (*arr)[3]);
B) void calc (char arr[2][3]);
C) void calc (char **arr);
D) void calc (char arr[][3]);

Answer

1 ABD
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Pointer and Const

• Const pointer Pointer itself cannot be changed.
int* const p1;

• Pointer to const Pointed value cannot be changed.
int const *p1; or const int *p1;

• Const pointer to const Both cannot be changed.
const int* const p1;

const int const *p1; is wrong due to redundant const
qualifier.
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Increment/Decrement

1 #include <cstdio >
2 using namespace std;
3 int main ()
4 {
5 int a[] = {3,1,4,1,5,9};
6 int *p = a + 1,*q = a + 4;
7 int x = *++p,y = *q--;
8 int z = ++*p,w = (*q)--;
9 int t = (*p++) + (*--q);

10 int u = *p,v = *q;
11 for (int i = 0;i < 6;++i) printf ("%d",a[i]);
12 printf ("\n%d%d%d%d%d%d%d\n",x,y,z,w,t,u,v);
13 return 0;
14 }

Answer

1 315059
2 45511005

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 20 / 71



Introduction C++ Basics Data Structures Application Q & A

Increment/Decrement

1 #include <cstdio >
2 using namespace std;
3 int main ()
4 {
5 int a[] = {3,1,4,1,5,9};
6 int *p = a + 1,*q = a + 4;
7 int x = *++p,y = *q--;
8 int z = ++*p,w = (*q)--;
9 int t = (*p++) + (*--q);

10 int u = *p,v = *q;
11 for (int i = 0;i < 6;++i) printf ("%d",a[i]);
12 printf ("\n%d%d%d%d%d%d%d\n",x,y,z,w,t,u,v);
13 return 0;
14 }

Answer

1 315059
2 45511005

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 20 / 71



Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures
Sequence Containers
Associative Containers
Tree

4 Application

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 21 / 71



Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures
Sequence Containers
Associative Containers
Tree

4 Application

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 22 / 71



Introduction C++ Basics Data Structures Application Q & A

Vector

1 int main ()
2 {
3 vector <int > lst = {2,0,2,5,1,2,1,4};
4 int tot = 0,flag = 0,n = lst.size ();
5 for (auto it = lst.begin ();it != lst.end ();++it)
6 {
7 if (flag) tot += lst.front ();
8 else tot += *it;
9 flag = 1 - flag;

10 }
11 printf ("%d,%d\n",tot ,tot / n);
12 return 0;
13 }

Answer

1 14,1
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Vector (Cont.)

resize (),reserve ()

1 vector <int > lst = {2,0,2,5};
2 lst.reserve (8);
3 printf ("%ld ,%ld ,%d\n",lst.size (),lst.capacity (),lst.back ());
4 lst.reserve (6);
5 printf ("%ld ,%ld ,%d\n",lst.size (),lst.capacity (),lst.back ());
6 lst.resize (10 ,3);
7 printf ("%ld ,%ld ,%d\n",lst.size (),lst.capacity (),lst.back ());
8 lst.resize (3,5);
9 printf ("%ld ,%ld ,%d\n",lst.size (),lst.capacity (),lst.back ());

Answer

1 4,8,5
2 4,8,5
3 10,10,3
4 3,10,2
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Stack/Queue

1 #include <stack >

2 #include <cstdio >

3 class CSC

4 {

5 private:

6 std::stack <int > s1,s2;

7 void tran () {while (!s1.empty ()) s2.push (s1.top ()),s1.pop ();}

8 public:

9 CSC () = default;

10 void add (int val) {s1.push (val );}

11 int del ()

12 {

13 if (s2.empty ())

14 {

15 if (s1.empty ()) return -1;

16 tran ();

17 }

18 int val = s2.top ();s2.pop ();

19 return val;

20 }

21 };
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Stack/Queue (Cont.)

1 int main ()
2 {
3 CSC arr;
4 for (int i = 1;i <= 5;++i) arr.add (i);
5 for (int i = 0;i <= 5;++i)
6 {
7 printf ("%d",arr.del ());
8 if (i != 5) printf (",");
9 }

10 printf ("\n");
11 return 0;
12 }

Answer

1 1,2,3,4,5,-1
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Stack/Queue (Cont.)

Sliding Window

1 void calc ()
2 {
3 int q[1005] = {0},num[] = {1,2,7,3,8,5,2,9};
4 int k = 3,n = 8,head = 0,tail = -1;
5 for (int i = 0;i < n;++i)
6 {
7 while (head <= tail && q[head] <= i - k) ++head;
8 while (head <= tail && num[q[tail]] <= num[i]) --tail;
9 q[++ tail] = i;

10 if (i >= k - 1) printf ("%d",num[q[head ]]);
11 }
12 printf ("\n");
13 }

Answer (Hint: It also can be implemented with std::deque.)

1 778889
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Stack/Queue (Cont.)

Circular Queue

Empty head == tail;

Full (tail + 1) % capacity == front;

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 28 / 71



Introduction C++ Basics Data Structures Application Q & A

Link list

Version 1

1 LinkNode* func (LinkNode* head)
2 {
3 LinkNode* pre = nullptr;
4 LinkNode* cur = head;
5 LinkNode* nxt = nullptr;
6 while (cur != nullptr)
7 {
8 nxt = cur -> next;
9 cur -> next = pre;

10 pre = cur;cur = nxt;
11 }
12 return pre;
13 }
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Link list (Cont.)

Version 2

1 LinkNode* func (LinkNode* head)
2 {
3 if (head == nullptr || head -> next == nullptr) return head;
4 LinkNode* new_head = func (head -> next);
5 head -> next -> next = head;
6 head -> next = nullptr;
7 return new_head;
8 }
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Map

Hashmap

1 #define TABLE_SIZE 7
2 struct HashTable {int table[TABLE_SIZE ];};
3 int hashFunction (int key) {return key % TABLE_SIZE ;}
4 void insert(int table[],int key)
5 {
6 int id = hashFunction (key);
7 while (table[id] != -1) id = (id + 1) % TABLE_SIZE;
8 table[id] = key;
9 }
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Map (Cont.)

1. The following keys are inserted in order:{7, 14, 21, 28, 35, 42}. After
inserting all keys, what is the average successful search length (average number
of comparisons to find an existing key)?

A) 2.0
B) 2.5
C) 3.0
D) 3.5

2. In the worst-case scenario for linear probing, inserting n elements into a
table of size n requires?

A) O(n) time per insertion
B) O(log n) time per insertion
C) O(n log n) total time for all insertions
D) O(n2) total time for all insertions

Answer

1 D;AD
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Set

Bitset

1 const int RANGE_SIZE = 128;
2 const int BITS_PER_BYTE = 8;
3 const int BITS_PER_LONG = BITS_PER_BYTE * sizeof(long);
4 const int CVEC_WORDS = (RANGE_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG;
5 struct BitSet
6 {
7 unsigned long words[CVEC_WORDS ];
8 BitSet ()
9 {

10 for (int i = 0;i < CVEC_WORDS ;++i) words[i] = 0;
11 }
12 };
13 unsigned long createMask (int k)
14 {
15 unsigned long x = 1L;
16 return x << k % BITS_PER_LONG;
17 }
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Set (Cont.)

1 // check if the k-th characters in ASCII table in the Set
2 bool inSet(BitSet &cv, int k)
3 {
4 if (k < 0 || k >= RANGE_SIZE) return;
5 return cv.words[k / BITS_PER_LONG] & createMask (k);
6 }
7 // set the k-th character in ASCII table to the set
8 void setBit(BitSet &cv, int k)
9 {

10 if (k < 0 || k >= RANGE_SIZE) return;
11 cv.words[k / BITS_PER_LONG] |= createMask (k);
12 }
13 // remove the k-th characters in ASCII Table from the set
14 void remove(BitSet &cv, int k)
15 {
16 if (k < 0 || k >= RANGE_SIZE) return;
17 cv.words[k / BITS_PER_LONG] &= ~createMask (k);
18 }
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Binary Tree

Three Tree Traversal Methods

• Preorder Traversal Root → Left → Right
• Inorder Traversal Left → Root → Right
• Postorder Traversal Left → Right → Root

Question

Preorder traversal 1, 2, 4, 8, 5, 9, 3, 6, 10, 7
Inorder traversal 8, 4, 2, 9, 5, 1, 6, 10, 3, 7
Based on the given preorder and inorder traversals, what is the
postorder traversal?

Answer
8, 4, 9, 5, 2, 10, 6, 7, 3, 1
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Inorder traversal 8, 4, 2, 9, 5, 1, 6, 10, 3, 7
Based on the given preorder and inorder traversals, what is the
postorder traversal?

Answer
8, 4, 9, 5, 2, 10, 6, 7, 3, 1
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Binary Tree (Cont.)

1 int find (int x)
2 {
3 for (int i = 0;i < n;++i)
4 if (in[i] == x) return i;
5 return -1;
6 }
7 void getpost (int sl,int sr ,int fl ,int fr)
8 {
9 if (sl > sr || fl > fr) return;

10 int k = find (__1__);
11 getpost (__2__); getpost (__3__ );
12 printf ("%d\n",pre[sl]);
13 }
14 void solve () {getpost (0,n - 1,0,n - 1);}

Answer

1 pre[sl]
2 sl + 1,sl + k - fl ,fl ,k - 1
3 sl + k - fl + 1,sr ,k + 1,fr
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BST

1 struct TreeNode
2 {
3 int key ,sz ,cnt;
4 TreeNode *left ,* right;
5 TreeNode (int val) :
6 key (val), sz (1), cnt (1), left (nullptr), right (nullptr) {}
7 };

1 bool search (TreeNode* u,int val)
2 {
3 if (u == nullptr) return false;
4 if (u -> key == val) return true;
5 else if (val < u -> key) return search (rt -> left ,val);
6 else return search (rt -> right ,val);
7 }
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BST (Cont.)

1 int get_sz (TreeNode* u) {return u == nullptr ? 0 : u -> size;}
2 TreeNode* insert (TreeNode* u, int val)
3 {
4 if (u == nullptr) return new TreeNode (val);
5 if (val < u -> key) u -> left = insert (u -> left ,val);
6 else if (val > u -> key) u -> right = insert (u -> right ,val);
7 else ++(u -> cnt);
8 u -> sz = u -> cnt + get_sz (u -> left) + get_sz (u -> right);
9 return u;

10 }

1 TreeNode* findMinNode (TreeNode* u)
2 {
3 while (u -> left != nullptr) u = u -> left;
4 return u;
5 }
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BST (Cont.)

1 TreeNode* remove (TreeNode* u,int val)
2 {
3 if (u == nullptr) return u;
4 if (val < u -> key) u -> left = remove (u -> left ,val);
5 else if (val > u -> key) u -> right = remove (u -> right ,val);
6 else
7 {
8 if (u -> cnt > 1) {--(rt -> cnt); return ;}
9 if (u -> left != nullptr && u -> right != nullptr)

10 {
11 TreeNode* nxt = findMinNode (u -> right);
12 u -> key = nxt -> key;u -> cnt = nxt -> cnt;nxt -> cnt = 1;
13 u -> right = remove (u -> right ,nxt -> key);
14 }
15 else
16 {
17 TreeNode *tmp = u;
18 u = (u -> left != nullptr) ? u -> left : u -> right;
19 delete tmp;return u;
20 }
21 }
22 u -> sz = u -> cnt + get_sz (u -> left) + get_sz (u -> right);
23 return u;
24 }
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BST (Cont.)

1 int queryRank (TreeNode* u,int val)
2 {
3 if (u == nullptr) return;
4 if (v == u -> key) return get_sz (u -> left) + 1;
5 else if (v < u -> key) return queryRank (u -> left ,val);
6 return queryRank (u -> right ,val) + get_sz (u -> left) + u -> cnt;
7 }

1 int querykth (TreeNode* u,int k)
2 {
3 if (u == nullptr) return -1;
4 if (u -> left)
5 {
6 if (u -> left -> sz >= k) return querykth (u -> left ,k);
7 if (u -> left -> sz + u -> cnt >= k) return u -> key;
8 }
9 else if (k <= u -> cnt) return u -> cnt;

10 return querykth (u -> right ,k - get_sz (u -> left) - u -> cnt);
11 }
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AVL Tree
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AVL Tree (Cont.)

1 avl_node* R_rotate (avl_node* u)
2 {
3 avl_node* x = u -> L;avl_node* y = x -> R;
4 x -> R = u;u -> L = y;
5 x -> fat = u -> fat;
6 u -> fat = x;
7 if (y != nullptr) y -> fat = u;
8 u -> upd ();x -> upd ();
9 return x;

10 }
11 avl_node* L_rotate (avl_node* u)
12 {
13 avl_node* x = u -> R;avl_node* y = x -> L;
14 x -> L = u;u -> R = y;
15 x -> fat = u -> fat;
16 u -> fat = x;
17 if (y != nullptr) y -> fat = u;
18 u -> upd ();x -> upd ();
19 return x;
20 }
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AVL Tree (Cont.)

1 avl_node* LR_rotate (avl_node* u) {u -> L = L_rotate (u -> L); return R_rotate (u);}
2 avl_node* RL_rotate (avl_node* u) {u -> R = R_rotate (u -> R); return L_rotate (u);}
3 int height (avl_node* u) const {return u ? u -> dep : -1;}
4 int calc (avl_node* u) const {return !u ? 0 : height (u -> L) - height (u -> R);}
5 avl_node* balance (avl_node* u)
6 {
7 if (u == nullptr) return nullptr;
8 int fac = calc (u);
9 if (fac > 1)

10 {
11 if (calc (u -> L) >= 0) return R_rotate (u);
12 u -> L = L_rotate (u -> L);
13 return R_rotate (u);
14 }
15 else if (fac < -1)
16 {
17 if (calc (u -> R) <= 0) return L_rotate (u);
18 u -> R = R_rotate (u -> R);
19 return L_rotate (u);
20 }
21 return u;
22 }
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Red-Black Tree

Key Characteristics of RB Trees

• Binary Search Tree Property

• Color Rules

• Every node is either red or black
• Root is always black
• All leaves (NIL nodes) are black

• Red Node Constraint

• No two consecutive red nodes

• Black Height Property

• Every path from root to leaf has
the same number of black nodes
• Ensures tree remains balanced
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Red-Black Tree (Cont.)

Theorem
For a red-black tree with n nodes, its height h satisfies
h ≤ 2 log2(n + 1).

Proof
Let bh be the black height of a RB tree.
Then we have n ≥ 2bh − 1 and h ≤ 2bh.
So we can conclude h ≤ 2bh ≤ log2(n + 1).
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Heap

Heap Construction

T (n) = 1 × (H − 1) + 2 × (H − 2) + · · ·+ 2H−1 × 0

= 2H − H − 1 = O(n)

1 void down (int *a,int n,int i)
2 {
3 int pos = i,l = 2 * i + 1,r = 2 * i + 2;
4 if (l < n && a[l] > a[pos]) pos = l;
5 if (r < n && a[r] > a[pos]) pos = i;
6 if (pos != i) swap (a[i],a[pos]),down (a,n,pos);
7 }
8 void build () // Default: max -heap
9 {

10 for (int i = a.size () / 2 - 1;i >= 0;--i) down (a,a.size (),i);
11 }
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Heap (Cont.)

Insert
1 void up (int *a,int id)
2 {
3 int fa = (id - 1) / 2;
4 while (id > 0 && a[id] > a[fa])
5 {swap (a[id],a[fa]);id = fa;fa = (id - 1) / 2;}
6 }
7 void insert (int val)
8 {
9 if (n == _MAX_SIZE) return;

10 a[n] = val;++n;up (a,n);
11 }

Delete
1 void del (int *a,int n)
2 {
3 if (n <= 0) return;
4 swap (a[0],a[n]);--n;down (a,n,0);
5 }
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Introduction C++ Basics Data Structures Application Q & A

Heap (Cont.)

Q1. Given the keyword sequence 5, 8, 12, 19, 28, 20, 15, 22 is a
min-heap, after inserting keyword 3 and performing heap adjustment, the
resulting min-heap is:

A) 3, 5, 12, 8, 28, 20, 15, 22, 19

B) 3, 5, 12, 19, 20, 15, 22, 8, 28

C) 3, 8, 12, 5, 20, 15, 22, 28, 19

D) 3, 12, 5, 8, 28, 20, 15, 22, 19

Answer

1 A
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Q1. Given the keyword sequence 5, 8, 12, 19, 28, 20, 15, 22 is a
min-heap, after inserting keyword 3 and performing heap adjustment, the
resulting min-heap is:

A) 3, 5, 12, 8, 28, 20, 15, 22, 19

B) 3, 5, 12, 19, 20, 15, 22, 8, 28
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Heap (Cont.)

Q2. Which of the following statements about a max-heap (containing at least
2 elements) is/are correct?

I. A heap can be viewed as a complete binary tree.

II. A heap can be stored using sequential (array-based) storage.

III. A heap can be viewed as a binary search tree.

IV. The second largest element in the heap must be in the level directly
below the root.

A) I and II only

B) II and III only

C) I, II, and IV only

D) I, III, and IV only

Answer

1 C
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Complexity

Complexity Name Example
O(1) Constant Array access

O(log n) Logarithmic Binary search
O(n) Linear Linear search

O(n log n) Log-linear Merge sort
O(n2) Quadratic Bubble sort
O(n3) Cubic Matrix multiplication
O(2n) Exponential Subset enumeration

Growth Rates:

O(1) ≤ O(log n) ≤ O(n) ≤ O(n log n) ≤ O(n2) ≤ O(n3) ≤ O(2n)
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Complexity (Cont.)

Time Complexity Analysis

1 for (int i = 1;i <= n;++i)
2 for (int j = 1;j <= n / 2;++j) ++cnt;
3 for (int i = 1;i <= n;i *= 2)
4 for (int j = 1;j <= n;++j) ++cnt;
5 for (int i = 1;i <= n;i *= 2)
6 for (int j = 1;j <= i;++j) ++cnt;
7 for (int i = 1;i <= n;++i)
8 for (int j = 1;j <= n / i;++j) ++cnt;

Answer
O(n2),O(n log n),O(n),O(n log n)
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Sort

1 void Bubble_Sort () {
2 for (int i = 0; i < n;++i)
3 for (int j = 0;j < n - i - 1;++j)
4 if (a[j] > a[j + 1]) swap (a[j],a[j + 1]);
5 }
6 void Selection_Sort () {
7 for (int i = 0;i < n;++i)
8 {
9 int minIndex = i;

10 for (int j = i + 1;j < n;++j)
11 if (a[j] < a[minIndex ]) minIndex = j;
12 swap (a[minIndex],a[i]);
13 }
14 }
15 void Insertion_Sort () {
16 for (int i = 1;i < n;++i)
17 {
18 int key = a[i],j = i - 1;
19 while (j >= 0 && a[j] > key) a[j + 1] = a[j],--j;
20 a[j + 1] = key;
21 }
22 }
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Sort (Cont.)

1 template <typename T>
2 void Merge_Sort (T a[],int l,int r)
3 {
4 if (l >= r) return;
5 int mid = (l + r) / 2;
6 Merge_Sort (a,l,mid); Merge_Sort (a,mid + 1,r);
7 vector <T> lst;
8 int posl = l,posr = mid + 1;
9 while (posl <= mid && posr <= r)

10 {
11 if (a[posl] <= a[posr]) lst.push_back (a[posl ++]);
12 else lst.push_back (a[posr ++]);
13 }
14 while (posl <= mid) lst.push_back (a[posl ++]);
15 while (posr <= r) lst.push_back (a[posr ++]);
16 for (int i = l;i <= r;++i) a[i] = lst[i - l];
17 }
18 Merge_Sort (a,0,n - 1);
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Sort (Cont.)

1 template <typename T>
2 int partition (T a[],int l,int r)
3 {
4 int pivot = a[l];
5 while (l < r)
6 {
7 while (l < r && pivot <= a[r]) --r;
8 a[l] = a[r];
9 while (l < r && a[l] <= pivot) ++l;

10 a[r] = a[l];
11 }
12 a[l] = pivot;
13 return l;
14 }
15 template <typename T>
16 void Quick_Sort (T a[],int l,int r)
17 {
18 if (l >= r) return;
19 int pivot = partition (a,l,r);
20 Quick_Sort (a,l,pivot - 1); Quick_Sort (a,pivot + 1,r);
21 }
22 Quick_Sort (a,0,n - 1);
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Sort (Cont.)

The Complexity of Different Sort Algorithms

Algorithm Best Average Worst
Selection Sort O(n2) O(n2) O(n2)

Insertion Sort O(n) O(n2) O(n2)

Bubble Sort O(n) O(n2) O(n2)

Merge Sort O(n log n) O(n log n) O(n log n)

Quick Sort O(n log n) O(n log n) O(n2)

Heap Sort O(n log n) O(n log n) O(n log n)

BST Tree Sort O(n log n) O(n log n) O(n2)
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Graph

A

B

C

D

Adjacency List : O(|V |+ |E |).

A: B C ×

B: A C ×

C: A B D ×

D: C ×

Adjacency Matrix : O(|V |2).
0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0


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DFS/BFS

Visualization

Algorithm 1 DFS
procedure search(u)

mark u as vis
for each neighbor v of u do

if v is not vis then
serach(v)

end if
end for

end procedure

Algorithm 2 BFS
procedure search(source)

Q ← new Queue()
Q.enqueue(source)
while Q not empty do

u ← Q.dequeue()
for each neighbor v of u do

if v is not vis then
mark v as vis
Q.enqueue(v)

end if
end for

end while
end procedure
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Unweighted Shortest-Path

A

B

C

D

E

F

Algorithm 3 0-1 BFS
procedure calc(source, graph)

Q ← new Queue()
dist ← new Dictionary()
Q.enqueue(source)
dist[source]← 0
while Q is not empty do

u ← Q.dequeue()
for each neighbor v of u in graph do

if v is not in dist then
dist[v ]← dist[u] + 1
Q.enqueue(v)

end if
end for

end while
return dist

end procedure
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Weighted Shortest-Path

A

B

C

D

E

F

4

1

2

2

7

2

5

Algorithm 4 Dijkstra
procedure calc(source, graph)

dist ← array of size |V |, initialized to ∞
vis ← boolean array of size |V |, initialized to false
dist[source]← 0
for i ← 1 to |V | do

u ← vertex with minimum dist not vis
vis[u]← true
for each neighbor v of u with weight w do

if not vis[v ] and dist[u]+w < dist[v ] then
dist[v ]← dist[u] + w

end if
end for

end for
return dist

end procedure
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Topological Sort

Algorithm 5 Topological Sort
procedure Search(G(V , E))

indeg [|V |]← 0, q ← ∅, ord ← ∅
for (u, v) ∈ E do indeg [v ]← indeg [v ] + 1
end for
for v ∈ V do

if indeg [v ] = 0 then q.push(v)
end if

end for
while q ̸= ∅ do

u ← q.pop(), ord .push(u)
for v ∈ adj[u] do

indeg [v ]← indeg [v ]− 1
if indeg [v ] = 0 then q.push(v)
end if

end for
end while
if |ord| ̸= |V | then return ∅
end if
return ord

end procedure
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Thanks for listening!

Good Luck on Your Final Exams!
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