CSC3200 Final Review

Data Structures and Advanced Programming

Chaoyi Sun

CUHK-Shenzhen Programming Contest Team

Dec 8 2025

@ Introduction

Intr
oe

Self-Introduction

Information
e Name Chaoyi Sun
e Year Second-year Undergraduate
e Major Computer Science
Achievements
o Silver Medal, 50th ICPC Asia
Regional Contest (Wuhan)
o Silver Medal, 50th ICPC Asia
Regional Contest (Nanjing)
e Bronze Medal, 11th CCPC
National Contest (Chongging)

CUHK-Shenzhen Programming Con

@® C++ Basics

@® C++ Basics
Variable

C+4+ Basics

C++ Keywords

alignas alignof and and_eq asm auto
bitand bitor bool break case catch
char char8_t chari6_t char32_t class compl
concept const consteval constexpr constinit const_cast
continue co_await co_return co_yield decltype default
delete do double dynamic_cast else enum
explicit export extern false float for
friend goto if inline int long
mutable namespace new noexcept not not_eq
nullptr operator or or_eq private protected
public register reinterpret_cast requires return short
signed sizeof static static_assert static_cast struct
switch template this thread_local throw true
try typedef typeid typename union unsigned
using virtual void volatile wchar_t while
xor xXor_eq

Prec. | Operator Assoc.
1 O nd->. :: ++ —— (postfix) L—R
2 ! ~ ++ —— (prefix) - + * & R—L
3 S>x Lk L—R
4 * /% L—R
5 + - L—R
6 < > L—R
7 < <= > >= L—R
38 == I= L—R
9 & L—R
10 - L—R
11 | L—R
12 && L—R
13 Il L—R
14 ? R—L
15 = 4= -= x= /= Y= &= "= |= «= »= R—L
16 s L—R

CUHK-SE

@® C++ Basics

Memory

Memory Region

Characteristics

Stack Automatic stack frames created for each
method call to hold local variables
Heap Dynamic memory pool for manual allocation

and lifetime control.

Dynamic Allocation

[manual] malloc/free

Global/Static

[Auto] Global variables/constants that per-
sist throughout the lifetime of the program.

Constant

[Auto] constants/read-only

CUHK-Shenzhen ramming C

Example

void f1 ()

{
int *p = new int [5];
int variable = 10;

|
|
|
|
|
|
|
|
|
|
|
l

0000000000001149 <_Z2flv>:a

1149: f3 0f le fa endbr64

114d: 55 push %rbp

114e: 48 89 e5 mov %rsp,hrbp

1151: 48 83 ec 10 sub $0x10 ,%rsp

1155: bf 14 00 00 00 mov $0x14 ,%edi

115a: e8 f1 fe ff ff call 1050 <_Znam@plt>
115f: 48 89 45 f£8 mov %rax,-0x8 (%rbp)
1163: c7 45 f4 0Oa 00 00 00 movl $0xa, -0xc (%rbp)
116a: 90 nop

116b: c9 leave

116¢c: c3 ret

Example (Cont.)

|
|
|
|
l

void f1 ()

{
int *p = new int[5];
delete[] p;

0000000000001149 <_Z2flv>:

1198: c3 ret

T 1
} 1169: £3 0f le fa endbr64 :
| 116d: 55 push %rbp |
| 116e: 48 89 e5 mov %rsp,hrbp |
| 1171 48 83 ec 10 sub $0x10 ,%rsp |
| 1175: bf 14 00 00 00 mov $0x14 ,%edi |
‘ 117a: e8 el fe ff ff call 1060 <_Znam@plt> |
‘ 117fF: 48 89 45 f8 mov %rax,-0x8 (%rbp) |
\ 1183: 48 83 7d £8 00 cmpq $0x0,-0x8 (%rbp) |
\ 1188: 74 Oc je 1196 <_Z2f1v+0x2d> |
| 118a: 48 8b 45 £8 mov -0x8 (%rbp) ,%rax |
‘ 118e: 48 89 c7 mov Y%rax ,%rdi |
| 1191: e8 da fe ff ff call 1070 <_ZdaPv@plt> |
| 1196: 90 nop |
‘ 1197: c9 leave |
l |

@® C++ Basics

Pointer

Pointer / Reference

T
| int vari = 3100;

‘int *ptr = &vari; // pointer
‘int &ref = vari; // reference
‘*ptr = 3200;

e Pointer: Can be reassigned, can be null, has separate memory.

e Reference: Must be initialized, cannot be reassigned, alias to existing
variable.

Pointer / Reference

T
| int vari = 3100;

‘int *ptr = &vari; // pointer
‘int &ref = vari; // reference
‘*ptr = 3200;

e Pointer: Can be reassigned, can be null, has separate memory.

e Reference: Must be initialized, cannot be reassigned, alias to existing
variable.

The meaning of *

e int *ptr = &vari; Type specifier in declarations (store address).

e xptr = 3200; Dereference operator in expressions.

T
‘#include <cstdio>

‘void calc (int a,int b,int **fl,int **£f2)

xfl = a + b;f2 = a - b;

int *temp = *f1l;xfl =

main ()

int a = 5,b = 3,x,y;
int *px = &x,*py = &y;
calc (a,b,&px,&py);
printf (,X,¥) 5

return 0;

Multi-level Pointer

T
‘ #include <cstdio>

‘void calc (int a,int b,int **fl,int **£f2)

| €
‘ #xfl = a + b;**f2 = a - b;

| int *temp = *f1;*f1 = *f2;%f2 = temp;
|}

| int main ()

| €

‘ int a = 5,b = 3,x,y;

| int *px = &x,*py = &y;

‘ calc (a,b,&px,&py);

| printf (JX,¥)5

‘ return O;

‘}

Answer

8 2

/i Sun

CUHK-Shenzhen Programming Contest Team

200 Final

14 /71

T
‘ﬂinclude <cstdio>

void
void
void
void
int
{

swapl (int *x,int *y) {int tmp = *x;*x = *y;*y = tmp;}

swap2 (int *x,int *y) {int *tmp = x;x = y;y = tmp;}

swap3 (int **x,int *xy) {int *tmp = *x;*x = *y;*y = tmp;}

swap4 (int *&x,int *&y) {int *tmp = x;x = y;y = tmp;}
main ()

int a = 5,b = 3;

swapl (&a,&b);

printf (,a,b);

a = 5,b = 3;

swap2 (&a,&b);

printf (,a,b);

a = 5,b = 3;

int #*pa = &a,*pb = &b;

swap3 (&pa,&pb);

printf (,a,b,*pa,*pb);
a = 5,b = 3;

pa = &a;pb = &b;

swap4 (pa,pb);

printf (,a,b,*pa,*pb);

return 0;

C++ B:

Swap (cont.)

(O2 I G2 ¢) B OV)
W w wom
w w
(G2 &)]

Hint
Drawing memory diagrams can greatly assist in solving such
problems!

CUHK-S

T
| int arr([5] = {0,1,8,4,7};
| *Carr + 3) = 5;

‘for (int i = 0;i < 5;++i) printf (,i,*(arr + i));
The O0-th: O
The 1-th: 1
The 2-th: 3
The 3-th: b5
The 4-th: 7

C++ Be

Array (Cont.)

i #include <cstdio>

‘/* declaration here */

‘ int main ()

| €

char arr[2]1[3] = {{ s s 3,1 B s 3}
calc (arr);

return O;

\
\
\
‘ }

Which of the following function declarations are correct?
A) void calc (char (*arr)[3]);

B) void calc (char arr[2][3]);

C) void calc (char **arr);

D) void calc (char arr[]1[3]);

C++ B:

Array (Cont.)

T
‘ﬂinclude <cstdio>
‘/* declaration here */

‘int main ()

| €

| char arr[2]1[3] = {{ s s 3,1 B s 3}
| calc (arr);

‘ return 0;

‘ }

Which of the following function declarations are correct?
A) void calc (char (*arr)[3]);

B) void calc (char arr[2][3]);

C) void calc (char **arr);

D) void calc (char arr[]1[3]);

Answer

ABD

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

71

Pointer and Const

Chaoyi Sun

e Const pointer Pointer itself cannot be changed.
int* const pl;

¢ Pointer to const Pointed value cannot be changed.
int const *pl; or const int *pl;

e Const pointer to const Both cannot be changed.
const int* const pl;

const int comnst *pl; is wrong due to redundant const
qualifier.

CUHK-St

Increment/Decrement

#include <cstdio>
using namespace std;
int main ()

{
int all = {3,1,4,1,5,9};
int *p = a + 1,%q = a + 4;
int x = *++p,y = *q--;
int z = ++%p,w = (*q)--;
int t = (¥p++) + (*--q);
int u = *p,v = *q;
for (int i = 0;i < 6;++i) printf (,alil);
printf (,X,¥,2Z,W,t,u,v);

return O0;

Increment/Decrement

#include <cstdio>
using namespace std;
int main ()
{
int all = {3,1,4,1,5,9};
int *p = a + 1,%q = a + 4;
int x = *++p,y = *q--;
int z = ++%p,w = (*q)--;
int t = (*p++) + (*--q);
int u = *p,v = *q;
for (int i = 0;i < 6;++i) printf (,alil);
printf (JX Y Z,W,t,u,v);
return O0;
}
315059
45511005

CUHK-Shenzhen Programming Contest Team

© Data Structures

© Data Structures
Sequence Containers

Data Stru
(o]]

Vector

T
| int main ()

1

|
| € |
‘ vector <int> 1st = {2,0,2,5,1,2,1,4}; I
‘ int tot = 0,flag = O0,n = 1lst.size (); I
‘ for (auto it = 1lst.begin ();it != 1st.end ();++it) |
| |
| if (flag) tot += 1lst.front (O); |
\ else tot += *it; |
\ flag = 1 - flag; |
| |
\ printf (,tot,tot / n); |
‘ return 0; |
ki |

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

200 Final Revie

Data Stru
(o]]

Vector

T
| int main ()

1

|
| € |
‘ vector <int> 1st = {2,0,2,5,1,2,1,4}; I
‘ int tot = 0,flag = O0,n = 1lst.size (); I
‘ for (auto it = 1lst.begin ();it != 1st.end ();++it) |
| |
| if (flag) tot += lst.front (); |
\ else tot += *it; |
\ flag = 1 - flag; |
| |
\ printf (,tot,tot / n); |
‘ return 0; |
ki |

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

200 Final Revie

Vector (Con

i
|
|
|
|
|
|
|
l

vector <int> 1lst =

lst.reserve (8);

printf (
lst.reserve (6);
printf (
lst.resize (10,3);
printf (

lst.resize (3,5);
printf (

{2,0,2,5};

,1st.

,1st.

,1st.

,1st.

size

size

size

size

() ,1lst.

O,1st.

O,1st.

O,1st.

capacity

capacity

capacity

capacity

() ,1lst.

O,1st.

O,1st.

O,1lst.

back

back

back

back

O);

O

O

O);

i
|
|
|
|
|
|
|
|

Vector (Con

resize (),reserve ()

vector <int> 1lst = {2,0,2,5};

lst.reserve (8);

printf (,1st.size (),1lst.capacity (),1lst.back ());
lst.reserve (6);

printf (,1st.size (),1lst.capacity (),1lst.back ());
lst.resize (10,3);

printf (,1st.size (),1lst.capacity (),1lst.back ());
lst.resize (3,5);

printf (,1st.size (),lst.capacity (),lst.back ());

Answer

T 1
| 4,8,5 |
| 4,8,5 |
| 10,10,3 |
‘3,10,2 I

i Sun CUHK-Shenzhen P

200 Final

Stack/Queue

T
| #include <stack>

| #include <cstdio>
| ciass csc
| <
private:
std::stack <int> s1,s2;
void tran () {while (!sl.empty ()) s2.push (sl.top ()),sil.pop ();}
public:
CSC () = default;
void add (int val) {sl.push (val);}
int del ()

{
if (s2.empty ()
{
tran O;
¥
int val = s2.top ();s2.pop O3
return valj;
}

\
\
\
\
\
\
\
\
\
\
| if (si.empty ()) return -1;
\
\
\
\
\

Stack/Queue

T
| int main ()

return O;

}

|
| € |
‘ CSC arr; I
‘ for (int i = 1;i <= 5;++i) arr.add (i); |
| for (int i = 0;i <= 5;++i) |
\ { |
‘ printf (,arr.del ()); I
| if (i != 5) printf (s |
\ b |
} printf (s :
[|

Stack/Queue

iint main () i
| € |
‘ CSC arr; I
‘ for (int i = 1;i <= 5;++i) arr.add (i); |
| for (int i = 0;i <= 5;++i) |
\ { |
‘ printf (,arr.del ()); I
| if (i != 5) printf (s |
\ b |
| printf () I
‘ return O; I
E |

Answer

T 1
‘1,2,3,4,5,-1 I

/i Sun CUHK-Shenzhen Programming Contest Team

200 Final 26 /71

int q[1005]
int k = 3,n = 8,head = 0,tail = -1;
for (int i = 0;i < n;++i)

{

{0},num[] = {1,2,7,3,8,5,2,9};

while (head <= tail && ql[head] <= i - k) ++head;
while (head <= tail && num[q[taill] <= num([i]) --tail;
ql++taill = i;
if (i >= k - 1) printf (,num[q[head]]);
}
printf ()

int q[1005]

{0},num[] = {1,2,7,3,8,5,2,9};

int k = 3,n = 8,head = 0,tail = -1;
for (int i = 0;i < n;++i)
{

while (head <= tail && ql[head] <= i - k) ++head;
while (head <= tail && num[q[taill] <= num([i]) --tail;
ql++taill = i;
if (i >= k - 1) printf (,num[q[head]]);
}
printf ()

Stack/Queue (Cont.)

Circular Queue

Empty head == tail;
Full (tail + 1) % capacity == front;

'@
N

tail

ramming C

Data Structu

Link list

LinkNode* func (LinkNode* head)

{
LinkNode* pre = nullptr;
LinkNode* cur = head;
LinkNode* nxt = nullptr;
while (cur != nullptr)
{
nxt = cur -> next;
cur -> next = pre;
pre = curj;cur = nxt;
¥

return pre;

Data Structu

Link list (Cont.)

LinkNode* func (LinkNode* head)
{
if (head == nullptr || head -> next == nullptr) return head;
LinkNode* new_head = func (head -> next);
head -> next -> next = head;
head -> next = nullptr;
return new_head;
¥

CUHK-Shenzhen Pr amming

Data Structu

© Data Structures

Associative Containers

Data Structur

#define TABLE_SIZE 7

struct HashTable {int table[TABLE_SIZE];};

int hashFunction (int key) {return key % TABLE_SIZE;}
void insert(int table[],int key)

{

int id = hashFunction (key);
while (table[id] !'= -1) id = (id + 1) % TABLE_SIZE;
table[id] = key;

Map (Cont.)

1. The following keys are inserted in order:{7, 14, 21, 28, 35, 42}. After
inserting all keys, what is the average successful search length (average number
of comparisons to find an existing key)?

A) 2.0

B) 2.5

Q) 3.0

D) 3.5
2. In the worst-case scenario for linear probing, inserting n elements into a
table of size n requires?

A) O(n) time per insertion

B) O

) O(

) O(log n) time per insertion

C) O(nlog n) total time for all insertions
) O(

&)

O(n?) total time for all insertions

Map (Cont.)

1. The following keys are inserted in order:{7, 14, 21, 28, 35, 42}. After
inserting all keys, what is the average successful search length (average number
of comparisons to find an existing key)?

A) 2.0
B) 2.5
C) 3.0
D) 3.5

2. In the worst-case scenario for linear probing, inserting n elements into a
table of size n requires?

A) O(n) time per insertion

B) O(log n) time per insertion

C) O(nlog n) total time for all insertions
D) O(n?) total time for all insertions

D; AD

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

Final 71

Data Structur

const int RANGE_SIZE = 128;

const int BITS_PER_BYTE = 8;

const int BITS_PER_LONG = BITS_PER_BYTE * sizeof (long);

const int CVEC_WORDS = (RANGE_SIZE + BITS_PER_LONG - 1) / BITS_PER_LON
struct BitSet

{

«Q

unsigned long words [CVEC_WORDS];
BitSet ()
{
for (int i = 0;i < CVEC_WORDS;++i) words[i] = 0;
}
1
unsigned long createMask (int k)
{
unsigned long x = 1L;
return x << k % BITS_PER_LONG;

enzhen Programming ntest Team

/71

Data Structur

Set (Cont.)

// check if the k-th characters in ASCII table in the Set
bool inSet(BitSet &cv, int k)
{
if (k < 0 || k > RANGE_SIZE) return;
return cv.words[k / BITS_PER_LONG] & createMask (k);
}
// set the k-th character 4in ASCII table to the set
void setBit(BitSet &cv, int k)
{
if (k < 0 || k¥ >= RANGE_SIZE) return;
cv.words [k / BITS_PER_LONG] |= createMask (k);
}
// remove the k-th characters in ASCII Table from the set
void remove(BitSet &cv, int k)
{
if (k < 0 || k >= RANGE_SIZE) return;
cv.words [k / BITS_PER_LONG] &= ~createMask (k);

© Data Structures

Tree

Data Structures

Binary Tree

Three Tree Traversal Methods

e Preorder Traversal Root — Left — Right

e Inorder Traversal Left — Root — Right
e Postorder Traversal Left — Right — Root

Question

Preorder traversal 1, 2, 4, 8,5, 9, 3,6, 10, 7

Inorder traversal 8, 4, 2,9, 5,1, 6, 10, 3, 7

Based on the given preorder and inorder traversals, what is the
postorder traversal?

CUHK-Shenzhen Programming Co

Data Structures

Binary Tree

Three Tree Traversal Methods

e Preorder Traversal Root — Left — Right

e Inorder Traversal Left — Root — Right
e Postorder Traversal Left — Right — Root

Question

Preorder traversal 1, 2, 4, 8,5, 9, 3,6, 10, 7

Inorder traversal 8, 4, 2,9, 5,1, 6, 10, 3, 7

Based on the given preorder and inorder traversals, what is the
postorder traversal?

Answer
8,4,9,5 2,10,6,7,3,1

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

Data Structures

Binary Tree (Cont.)

int find (int x)
{
for (int i = 0;i < mj;++i)
if (in[i] == x) return i;
return -1;
¥
void getpost (int sl,int sr,int fl,int fr)
{
if (sl > sr || f1 > fr) return;
int k = find (__1__);
getpost (__2__);getpost (__3__);
printf (,prelsll]);
¥
void solve () {getpost (0,n - 1,0,n - 1);}

Data Structures

Binary Tree (Cont.)

int find (int x)
{
for (int i = 0;i < mj;++i)
if (in[i] == x) return i;
return -1;
¥
void getpost (int sl,int sr,int fl,int fr)
{
if (sl > sr || f1 > fr) return;
int k = find (__1__);
getpost (__2__);getpost (__3__);
printf (,prelsll]);
¥
void solve () {getpost (0,n - 1,0,n - 1);}

Answer

prelsl]
sl + 1,s1 + k - f1,f1,k - 1
sl + k - f1 + 1,sr,k + 1,fr

Data Structures

struct TreeNode

{

int key,sz,cnt;

TreeNode *left ,*right;

TreeNode (int val)

key (val), sz (1), cnt (1), left (nullptr),
}s

right (nullptr) {}

bool search (TreeNode* u,int val)
{
if (u == nullptr) return false;
if (u -> key == val) return true;
else if (val < u -> key) return search (rt
else return search (rt -> right,val);

-> left,val);

Data Structures

BST (Cont.)

int get_sz (TreeNode* u) {return u == nullptr ? 0 : u -> size;}
TreeNode* insert (TreeNode* u, int val)
{

if (u == nullptr) return new TreeNode (val);

if (val < u -> key) u -> left = insert (u -> left,val);

else if (val > u -> key) u -> right = insert (u -> right,val);

else ++(u -> cnt);
u -> sz = u -> cnt + get_sz (u -> left) + get_sz (u -> right);
return u;

TreeNode* findMinNode (TreeNode* u)

{
while (u -> left != nullptr) u = u -> left;

return u;

Data Structures

TreeNode* remove (TreeNode* u,int val)
{

}
u -> sz = u -> cnt + get_sz (u -> left) + get_sz (u -> right);
return u;

}

T 1
\ |
\ |
| if (u == nullptr) return u; |
| if (val < u -> key) u -> left = remove (u -> left,val); |
| else if (val > u -> key) u -> right = remove (u -> right,val); |
| else |
\ { |
| if (u -> cnt > 1) {--(rt -> cnt);return;} |
| if (u -> left != nullptr && u -> right != nullptr)

\ { |
| TreeNode* nxt = findMinNode (u -> right); |
| u -> key = nxt -> key;u -> cnt = nxt -> cnt;nxt -> cnt = 1;

| u -> right = remove (u -> right,nxt -> key); |
\ ¥ I
| else |
\ { |
| TreeNode *tmp = u; |
| u = (u -> left != nullptr) ? u -> left : u -> right;

| delete tmp;return u; |
\ b |
\ I
\ I
\ I
l |

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

200 Final Revie

Data Structures

BST (Cont.)

T 1
| int queryRank (TreeNode* u,int val) |
I { I
| if (u nullptr) return; |
| if (v == u -> key) return get_sz (u -> left) + 1; |
| else if (v < u -> key) return queryRank (u -> left,val); |
| return queryRank (u -> right,val) + get_sz (u -> left) + u -> cnt]
|2 |
int querykth (TreeNode* u,int k)
{
if (u == nullptr) return -1;
if (u -> left)
{

T

\

\

\

\

\

| if (u -> left -> sz >= k) return querykth (u -> left,k);
| if (u -> left -> sz + u -> cnt >= k) return u -> key;
\

\

\

else if (k <= u -> cnt) return u -> cnt;
return querykth (u -> right,k - get_sz (u -> left) - u -> cnt);

Data Structures

AVL Tree

parent SubR
/\Ame /\ | T i et
i i paront ¢ - 9
N w0 w7 N 7N
sufRL SR <N N
parent sub
2 o
SN izl e
um‘/\ /\ ent AN PN
1 i o
/\h suffh
: bl parentite

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

200 Final Revie

Data Struct

AVL Tree (Co

T
| avl_node* R_rotate (avl_nodex u)

u -> upd O;x -> upd ()3
return x;

}

1

|
| € |
| avl_node* x = u -> L;avl_node* y = x -> R; |
| x ->R = usu ->L = y; |
| x -> fat = u -> fat; |
‘ u -> fat = x; |
| if (y != nullptr) y -> fat = u; |
| u -> upd O;x -> upd O3 |
| return x; |
| ¥ |
| avl_node* L_rotate (avl_nodex u) |
| € I
| avl_node* x = u -> R;avl_node* y = x -> L; |
| x ->L = uj;u ->R = y; |
| x -> fat = u -> fat; |
| u -> fat = x; I
| if (y != nullptr) y -> fat = u; |
\ |
\ |
l |

Data Structures

AVL Tree (C

1
avl_node* LR_rotate (avl_node* u) {u -> L = L_rotate (u -> L);return R_rotate (u)j}

avl_node* RL_rotate (avl_node* u) {u -> R = R_rotate (u -> R);return L_rotate (u)|}
int height (avl_nodex* u) const {return u ? u -> dep : -1;} |

int calc (avl_node* u) const {return !u ? 0 : height (u -> L) - height (u -> R);}
avl_node* balance (avl_node* u) |

r

\

\

\

\

\

I { I
| if (u == nullptr) return nullptr; |
| int fac = calc (u); I
\ if (fac > 1) |
\ { |
\ if (calc (u -> L) >= 0) return R_rotate (u); I
| u -> L = L_rotate (u -> L); I
| return R_rotate (u); I
\ } I
\ else if (fac < -1) |
\ { |
| if (calc (u -> R) <= 0) return L_rotate (u); |
| u -> R = R_rotate (u -> R); I
| return L_rotate (u); I
\ ¥ |
‘ return u; |
ki |

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

200 Final Revie

Data Structures

Red-Black Tree

Key Characteristics of RB Trees

e Binary Search Tree Property

o Color Rules

e Every node is either red or black
e Root is always black
o All leaves (NIL nodes) are black

o Red Node Constraint

e No two consecutive red nodes

e Black Height Property

e Every path from root to leaf has
the same number of black nodes
e Ensures tree remains balanced

Chaoyi Sun CUHK-St

Data Structures

Red-Black Tree (Cont.)

Theorem

For a red-black tree with n nodes, its height h satisfies
h < 2log,(n+1).

Proof

Let bh be the black height of a RB tree.
Then we have n > 2P — 1 and h < 2bh.
So we can conclude h < 2bh < logr(n+ 1).

CUHK-Shenzhen Programming Contest

Data Structu

Heap Construction

T(n):lx(H—l)—|—2><(H_2)++2H_1><0
:2H_H—]_:O(n)

for (int i = a.size () / 2 - 1;i >= 0;--i) down (a,a.size (),i);

[

T 1
| void down (int *a,int n,int i) |
I { I
| int pos = i,1 = 2 * i + 1,r = 2 * i + 23 |
| if (1 < n && all] > alpos]) pos = 1; |
| if (r < n && alr]l > alpos]) pos = ij; |
| if (pos != i) swap (al[il,alpos]),down (a,n,pos); |
|} |
| void build () //Default: maz-heap |
I { I
\ I

https://cdn4.winhlb.com/2025/12/04/69310e63d03a9.gif

Data Structures

Heap (Cont.)

Insert
T 1
| void up (int *a,int id) |
I { I
\ int fa = (id - 1) / 2; |
\ while (id > 0 && alid]l > alfal) I
| {swap (alid],alfal);id = fa;fa = (id - 1) / 2;}
|} I
| void insert (int val) |
I { I
| if (n == _MAX_SIZE) return; |
\ aln] = val;++n;up (a,n); |
R |
Delete
void del (int =*a,int n)
{

if (n <= 0) return;
swap (al[0],aln]);--n;down (a,n,0);

https://cdn4.winhlb.com/2025/12/04/6931121450aa2.gif
https://cdn4.winhlb.com/2025/12/04/6931121450558.gif

Data Structures

Heap (Cont.)

Q1. Given the keyword sequence 5, 8, 12, 19, 28, 20, 15, 22is a
min-heap, after inserting keyword 3 and performing heap adjustment, the
resulting min-heap is:

A) 3,5, 12,8, 28, 20, 15, 22, 19
B) 3,5, 12, 19, 20, 15, 22, 8, 28
C) 3,8, 12,5, 20, 15, 22, 28, 19
D) 3,12, 5, 8, 28, 20, 15, 22, 19

1en Programming Co

Data Structures

Heap (Cont.)

Q1. Given the keyword sequence 5, 8, 12, 19, 28, 20, 15, 22is a
min-heap, after inserting keyword 3 and performing heap adjustment, the
resulting min-heap is:

A) 3,5, 12,8, 28, 20, 15, 22, 19
B) 3,5, 12, 19, 20, 15, 22, 8, 28
C) 3,8, 12,5, 20, 15, 22, 28, 19
D) 3,12, 5, 8, 28, 20, 15, 22, 19

Answer

T 1

2 |

CUHK-Shenzhen Programming Contest Team

Data Structures

Heap (Cont.)

Q2. Which of the following statements about a max-heap (containing at least
2 elements) is/are correct?

I. A heap can be viewed as a complete binary tree.
[I. A heap can be stored using sequential (array-based) storage.
I1l. A heap can be viewed as a binary search tree.

IV. The second largest element in the heap must be in the level directly
below the root.

A) 1 and Il only

B) Il and Il only

C) I, 11, and IV only
D) 1, lll, and IV only

CUHK-S

Data Structures

Heap (Cont.)

Q2. Which of the following statements about a max-heap (containing at least
2 elements) is/are correct?

I. A heap can be viewed as a complete binary tree.
[I. A heap can be stored using sequential (array-based) storage.
I1l. A heap can be viewed as a binary search tree.

IV. The second largest element in the heap must be in the level directly
below the root.

A) 1 and Il only

B) Il and Il only

C) I, 11, and IV only
D) 1, lll, and IV only

Answer

Chaoyi Sun

O Application

O Application
Complexity

Complexity

Complexity Name Example
Oo(1) Constant Array access
O(log n) Logarithmic Binary search
O(n) Linear Linear search
O(nlog n) Log-linear Merge sort
O(n?) Quadratic Bubble sort
Oo(n%) Cubic Matrix multiplication
o(2") Exponential | Subset enumeration

Growth Rates:

Complexity (Con

Time Complexity Analysis

(int i =
for (int
(int i =
for (int
(int i =
for (int
(int i =
for (int

<= nj++i)

1;j <= n / 2;++j) ++cnt;
<= nj;i x= 2)

1;j <= n;++j) ++cnt;

<= n;i *= 2)

1;j <= i;++j) ++cnt;

<= n;++i)

1;j <= n / i;++j) ++cnt;

Complexity (Cont.)

Time Complexity Analysis

for (int i =
for (int
for (int i =

1;i <= n;++i)
h]
1
for (int j = 1;j <= n;++j) ++cnt;
1
J
1
J

= 1;j <= n / 2;++j) ++cnt;
;i <= nj;i ox= 2)

for (int i = 1;i <= n;i *= 2)
for (int = 1;j <= i;++j) ++cnt;
for (int i = 1;i <= n;++i)
for (int = 1;j <= n / i;++j) ++cnt;

Answer
0(n?), O(nlog n), O(n), O(nlog n)

CUHK-Shenzhen Programming Contest Team

55 /71

O Application

Sort

void Bubble_Sort () {
for (int i = 0; i < n;++i)
for (int j = 0;j < n - i - 1;++j)
if (aljl > alj + 11) swap (aljl,alj + 11);

}
void Selection_Sort () {
for (int i = 0;i < nj;++i)
{
int minIndex = 1i;
for (int j = i + 1;j < n;++j)
if (alj]l < alminIndex]) minIndex = j;
}
}
void Insertion_Sort () {
for (int i = 1;i < n;++i)
{

int key = alil,j = i - 1;
while (j >= 0 && aljl > key) alj + 11 = aljl,--j;
alj + 1] = key;

T
\
\
\
\
\
\
\
\
\
\
\
\ swap (alminIndex],alil);
\
\
\
\
\
\
\
\
\

Sort (Cont.)

T
‘template <typename T>

‘void Merge_Sort (T all,int 1,int r)

1

|

|
| € |
‘ if (1 >= r) return; I
\ int mid = (1 + 1) / 2; |
‘ Merge_Sort (a,l,mid);Merge_Sort (a,mid + 1,r); |
| vector <T> lst; |
‘ int posl = 1l,posr = mid + 1; |
| while (posl <= mid && posr <= r) |
|« |
| if (alposl] <= alposr]) 1st.push_back (alposl++]); |
| else 1lst.push_back (alposr++]); |
| |
| while (posl <= mid) 1lst.push_back (alposl++]); |
| while (posr <= r) 1lst.push_back (alposr++]); |
\ for (int i = 1;i <= r;++i) ali] = 1stl[i - 11; |
| ¥ |
‘Merge_Sort (a,0,n - 1); I

Sort (Cont.)

T
‘template <typename T>

‘int partition (T all,int 1,int r)

{
| int pivot = alll;
while (1 < r)
{
while (1 < r && pivot <= alr]) --r;
all]l = alrl;
while (1 < r && al[l] <= pivot) ++1;
alr] = alll;
}
a[l] = pivot;
return 1;
}

void Quick_Sort (T all,int 1,int r)

~

if (1 >= r) return;
int pivot = partition (a,l,r);

Quick_Sort (a,l,pivot - 1);Quick_Sort (a,pivot + 1,r);

\
\
\
\
\
\
\
\
\
\
\
template <typename T>
| p yp
\
\
\
\
\
\

o W

uick_Sort (a,0,n - 1);

Sort (Cont.)

The Complexity of Different Sort Algorithms

Algorithm Best Average Worst
Selection Sort O(n?) 0(n?) O(n?)
Insertion Sort 0O(n?) 0(n?)

Bubble Sort 0O(n?) 0(n?)

Merge Sort | O(nlogn) | O(nlogn) | O(nlogn)

Quick Sort O(nlogn) | O(nlogn) 0(n?)

Heap Sort O(nlogn) | O(nlogn) | O(nlogn)
BST Tree Sort | O(nlogn) | O(nlogn) o(n?)

CUHK-Shenzhen Programming Contest Team

https://visualgo.net/en/sorting

O Application

Graph Traversal

Application

Adjacency List : O(|V| + |E|). Adjacency Matrix : O(|V|?).

011
e {aHc)- e

CUHK-Shenzhen Programming Con

DFS/BFS

Visualization

Algorithm 1 DFS Algorithm 2 BFS
procedure SEARCH(u) procedure SEARCH(source)
mark u as vis Q < new Queue()
for each neighbor v of v do Q.enqueue(source)
if v is not vis then while @ not empty do

u < Q.dequeue()
SFRACH(V) for each neighbor v of u do
end if

if v is not vis then
mark v as vis
Q.enqueue(v)
end if
end for
end while
end procedure

end for
end procedure

Chaoyi Sun

https://visualgo.net/en/dfsbfs

O Application

Shortest-Path

CUHK-Sh

Application

Unweighted Shortest-Path

Algorithm 3 0-1 BFS

procedure caLcC(source, graph)
Q < new Queue()
dist < new Dictionary()

Q.enqueue(source)
e dist[source] < 0

while @ is not empty do
u + Q.dequeue()
for each neighbor v of u in graph do
if v is not in dist then
dist[v] < dist[u] + 1
Q.enqueue(v)
end if
end for
end while
return dist
end procedure

Chaoyi Sun

Application

Weighted Shortest-Path

Algorithm 4 Dijkstra

procedure caLc(source, graph)
dist < array of size |V/|, initialized to oo
vis <— boolean array of size | V|, initialized to false
dist[source] < 0
for i < 1 to |V| do
u < vertex with minimum dist not vis
vis[u] « true
for each neighbor v of u with weight w do
if not vis[v] and dist[u] + w < dist[v] then
dist[v] + dist[u] + w
end if
end for
end for
return dist
end procedure

O Application

Topological Sort

CUHK-Sh

Topological Sort

Algorithm 5 Topological Sort

procedure SEARCH(G(V, E))
indeg[|V|] < 0, g < 0, ord < 0
for (u, v) € E do indeg[v] < indeg[v] + 1
end for
for v € V do
if indeg[v] = 0 then g.push(v)
end if
end for
while g # 0 do
u < q.pop(), ord.push(u)
for v € adj[u] do
indeg([v] < indeg[v] — 1
if indeg[v] = 0 then q.push(v)
end if
end for
end while
if |ord| # | V| then return (
end if
return ord
end procedure

@ Q&A

A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

200 Final Revie

Thanks for listening!

Good Luck on Your Final Exams!

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

	Introduction
	C++ Basics
	Variable
	Memory
	Pointer

	Data Structures
	Sequence Containers
	Associative Containers
	Tree

	Application
	Complexity
	Sort
	Graph Traversal
	Shortest-Path
	Topological Sort

	Q & A
	附录

