
Introduction C++ Basics Data Structures Application Q & A

CSC3200 Final Review
Data Structures and Advanced Programming

Chaoyi Sun

CUHK-Shenzhen Programming Contest Team

Dec 8 2025

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 1 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures

4 Application

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 2 / 71

Introduction C++ Basics Data Structures Application Q & A

Self-Introduction

Information
• Name Chaoyi Sun
• Year Second-year Undergraduate
• Major Computer Science

Achievements
• Silver Medal, 50th ICPC Asia
Regional Contest (Wuhan)
• Silver Medal, 50th ICPC Asia
Regional Contest (Nanjing)
• Bronze Medal, 11th CCPC
National Contest (Chongqing)

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 3 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics
Variable
Memory
Pointer

3 Data Structures

4 Application

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 4 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics
Variable
Memory
Pointer

3 Data Structures

4 Application

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 5 / 71

Introduction C++ Basics Data Structures Application Q & A

C++ Keywords

alignas alignof and and_eq asm auto
bitand bitor bool break case catch
char char8_t char16_t char32_t class compl

concept const consteval constexpr constinit const_cast
continue co_await co_return co_yield decltype default
delete do double dynamic_cast else enum

explicit export extern false float for
friend goto if inline int long
mutable namespace new noexcept not not_eq
nullptr operator or or_eq private protected
public register reinterpret_cast requires return short
signed sizeof static static_assert static_cast struct
switch template this thread_local throw true
try typedef typeid typename union unsigned

using virtual void volatile wchar_t while
xor xor_eq

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 6 / 71

Introduction C++ Basics Data Structures Application Q & A

Operator Precedence

Prec. Operator Assoc.
1 () [] -> . :: ++ −− (postfix) L→R
2 ! ∼ ++ −− (prefix) - + * & R→L
3 ->* .* L→R
4 * / % L→R
5 + - L→R
6 « » L→R
7 < <= > >= L→R
8 == != L→R
9 & L→R
10 ^ L→R
11 | L→R
12 && L→R
13 || L→R
14 ? : R→L
15 = += -= *= /= %= &= ^= |= «= »= R→L
16 , L→R

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 7 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics
Variable
Memory
Pointer

3 Data Structures

4 Application

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 8 / 71

Introduction C++ Basics Data Structures Application Q & A

Memory

Memory Region Characteristics

Stack Automatic stack frames created for each
method call to hold local variables

Heap Dynamic memory pool for manual allocation
and lifetime control.

Dynamic Allocation [manual] malloc/free

Global/Static [Auto] Global variables/constants that per-
sist throughout the lifetime of the program.

Constant [Auto] constants/read-only

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 9 / 71

Introduction C++ Basics Data Structures Application Q & A

Example

1 void f1 ()
2 {
3 int *p = new int [5];
4 int variable = 10;
5 }

1 0000000000001149 <_Z2f1v >:a
2 1149: f3 0f 1e fa endbr64
3 114d: 55 push %rbp
4 114e: 48 89 e5 mov %rsp ,%rbp
5 1151: 48 83 ec 10 sub $0x10 ,%rsp
6 1155: bf 14 00 00 00 mov $0x14 ,%edi
7 115a: e8 f1 fe ff ff call 1050 <_Znam@plt >
8 115f: 48 89 45 f8 mov %rax ,-0x8(%rbp)
9 1163: c7 45 f4 0a 00 00 00 movl $0xa ,-0xc(%rbp)

10 116a: 90 nop
11 116b: c9 leave
12 116c: c3 ret

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 10 / 71

Introduction C++ Basics Data Structures Application Q & A

Example (Cont.)

1 void f1 ()
2 {
3 int *p = new int [5];
4 delete [] p;
5 }

1 0000000000001149 <_Z2f1v >:
2 1169: f3 0f 1e fa endbr64
3 116d: 55 push %rbp
4 116e: 48 89 e5 mov %rsp ,%rbp
5 1171: 48 83 ec 10 sub $0x10 ,%rsp
6 1175: bf 14 00 00 00 mov $0x14 ,%edi
7 117a: e8 e1 fe ff ff call 1060 <_Znam@plt >
8 117f: 48 89 45 f8 mov %rax ,-0x8(%rbp)
9 1183: 48 83 7d f8 00 cmpq $0x0 ,-0x8(%rbp)

10 1188: 74 0c je 1196 <_Z2f1v +0x2d >
11 118a: 48 8b 45 f8 mov -0x8(%rbp),%rax
12 118e: 48 89 c7 mov %rax ,%rdi
13 1191: e8 da fe ff ff call 1070 <_ZdaPv@plt >
14 1196: 90 nop
15 1197: c9 leave
16 1198: c3 ret

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 11 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics
Variable
Memory
Pointer

3 Data Structures

4 Application

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 12 / 71

Introduction C++ Basics Data Structures Application Q & A

Pointer / Reference

1 int vari = 3100;
2 int *ptr = &vari; // pointer
3 int &ref = vari; // reference
4 *ptr = 3200;

Differences
• Pointer: Can be reassigned, can be null, has separate memory.

• Reference: Must be initialized, cannot be reassigned, alias to existing
variable.

The meaning of *

• int *ptr = &vari; Type specifier in declarations (store address).

• *ptr = 3200; Dereference operator in expressions.

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 13 / 71

Introduction C++ Basics Data Structures Application Q & A

Pointer / Reference

1 int vari = 3100;
2 int *ptr = &vari; // pointer
3 int &ref = vari; // reference
4 *ptr = 3200;

Differences
• Pointer: Can be reassigned, can be null, has separate memory.

• Reference: Must be initialized, cannot be reassigned, alias to existing
variable.

The meaning of *

• int *ptr = &vari; Type specifier in declarations (store address).

• *ptr = 3200; Dereference operator in expressions.

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 13 / 71

Introduction C++ Basics Data Structures Application Q & A

Multi-level Pointer

1 #include <cstdio >
2 void calc (int a,int b,int **f1 ,int **f2)
3 {
4 **f1 = a + b;**f2 = a - b;
5 int *temp = *f1;*f1 = *f2;*f2 = temp;
6 }
7 int main ()
8 {
9 int a = 5,b = 3,x,y;

10 int *px = &x,*py = &y;
11 calc (a,b,&px ,&py);
12 printf ("%d␣%d\n",x,y);
13 return 0;
14 }

Answer

1 8 2

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 14 / 71

Introduction C++ Basics Data Structures Application Q & A

Multi-level Pointer

1 #include <cstdio >
2 void calc (int a,int b,int **f1 ,int **f2)
3 {
4 **f1 = a + b;**f2 = a - b;
5 int *temp = *f1;*f1 = *f2;*f2 = temp;
6 }
7 int main ()
8 {
9 int a = 5,b = 3,x,y;

10 int *px = &x,*py = &y;
11 calc (a,b,&px ,&py);
12 printf ("%d␣%d\n",x,y);
13 return 0;
14 }

Answer

1 8 2

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 14 / 71

Introduction C++ Basics Data Structures Application Q & A

Swap

1 #include <cstdio >
2 void swap1 (int *x,int *y) {int tmp = *x;*x = *y;*y = tmp;}
3 void swap2 (int *x,int *y) {int *tmp = x;x = y;y = tmp;}
4 void swap3 (int **x,int **y) {int *tmp = *x;*x = *y;*y = tmp;}
5 void swap4 (int *&x,int *&y) {int *tmp = x;x = y;y = tmp;}
6 int main ()
7 {
8 int a = 5,b = 3;
9 swap1 (&a,&b);

10 printf ("%d␣%d\n",a,b);
11 a = 5,b = 3;
12 swap2 (&a,&b);
13 printf ("%d␣%d\n",a,b);
14 a = 5,b = 3;
15 int *pa = &a,*pb = &b;
16 swap3 (&pa ,&pb);
17 printf ("%d␣%d␣%d␣%d\n",a,b,*pa ,*pb);
18 a = 5,b = 3;
19 pa = &a;pb = &b;
20 swap4 (pa,pb);
21 printf ("%d␣%d␣%d␣%d\n",a,b,*pa ,*pb);
22 return 0;
23 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 15 / 71

Introduction C++ Basics Data Structures Application Q & A

Swap (cont.)

Answer

1 3 5
2 5 3
3 5 3 3 5
4 5 3 3 5

Hint
Drawing memory diagrams can greatly assist in solving such
problems!

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 16 / 71

Introduction C++ Basics Data Structures Application Q & A

Array

1 int arr[5] = {0,1,3,4,7};
2 *(arr + 3) = 5;
3 for (int i = 0;i < 5;++i) printf ("The␣%d-th:␣%d\n",i,*(arr + i));

1 The 0-th: 0
2 The 1-th: 1
3 The 2-th: 3
4 The 3-th: 5
5 The 4-th: 7

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 17 / 71

Introduction C++ Basics Data Structures Application Q & A

Array (Cont.)

1 #include <cstdio >
2 /* declaration here */
3 int main ()
4 {
5 char arr [2][3] = {{’a’,’b’,’c’},{’e’,’f’,’g’}};
6 calc (arr);
7 return 0;
8 }

Which of the following function declarations are correct?
A) void calc (char (*arr)[3]);
B) void calc (char arr[2][3]);
C) void calc (char **arr);
D) void calc (char arr[][3]);

Answer

1 ABD

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 18 / 71

Introduction C++ Basics Data Structures Application Q & A

Array (Cont.)

1 #include <cstdio >
2 /* declaration here */
3 int main ()
4 {
5 char arr [2][3] = {{’a’,’b’,’c’},{’e’,’f’,’g’}};
6 calc (arr);
7 return 0;
8 }

Which of the following function declarations are correct?
A) void calc (char (*arr)[3]);
B) void calc (char arr[2][3]);
C) void calc (char **arr);
D) void calc (char arr[][3]);

Answer

1 ABD

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 18 / 71

Introduction C++ Basics Data Structures Application Q & A

Pointer and Const

• Const pointer Pointer itself cannot be changed.
int* const p1;

• Pointer to const Pointed value cannot be changed.
int const *p1; or const int *p1;

• Const pointer to const Both cannot be changed.
const int* const p1;

const int const *p1; is wrong due to redundant const
qualifier.

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 19 / 71

Introduction C++ Basics Data Structures Application Q & A

Increment/Decrement

1 #include <cstdio >
2 using namespace std;
3 int main ()
4 {
5 int a[] = {3,1,4,1,5,9};
6 int *p = a + 1,*q = a + 4;
7 int x = *++p,y = *q--;
8 int z = ++*p,w = (*q)--;
9 int t = (*p++) + (*--q);

10 int u = *p,v = *q;
11 for (int i = 0;i < 6;++i) printf ("%d",a[i]);
12 printf ("\n%d%d%d%d%d%d%d\n",x,y,z,w,t,u,v);
13 return 0;
14 }

Answer

1 315059
2 45511005

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 20 / 71

Introduction C++ Basics Data Structures Application Q & A

Increment/Decrement

1 #include <cstdio >
2 using namespace std;
3 int main ()
4 {
5 int a[] = {3,1,4,1,5,9};
6 int *p = a + 1,*q = a + 4;
7 int x = *++p,y = *q--;
8 int z = ++*p,w = (*q)--;
9 int t = (*p++) + (*--q);

10 int u = *p,v = *q;
11 for (int i = 0;i < 6;++i) printf ("%d",a[i]);
12 printf ("\n%d%d%d%d%d%d%d\n",x,y,z,w,t,u,v);
13 return 0;
14 }

Answer

1 315059
2 45511005

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 20 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures
Sequence Containers
Associative Containers
Tree

4 Application

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 21 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures
Sequence Containers
Associative Containers
Tree

4 Application

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 22 / 71

Introduction C++ Basics Data Structures Application Q & A

Vector

1 int main ()
2 {
3 vector <int > lst = {2,0,2,5,1,2,1,4};
4 int tot = 0,flag = 0,n = lst.size ();
5 for (auto it = lst.begin ();it != lst.end ();++it)
6 {
7 if (flag) tot += lst.front ();
8 else tot += *it;
9 flag = 1 - flag;

10 }
11 printf ("%d,%d\n",tot ,tot / n);
12 return 0;
13 }

Answer

1 14,1

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 23 / 71

Introduction C++ Basics Data Structures Application Q & A

Vector

1 int main ()
2 {
3 vector <int > lst = {2,0,2,5,1,2,1,4};
4 int tot = 0,flag = 0,n = lst.size ();
5 for (auto it = lst.begin ();it != lst.end ();++it)
6 {
7 if (flag) tot += lst.front ();
8 else tot += *it;
9 flag = 1 - flag;

10 }
11 printf ("%d,%d\n",tot ,tot / n);
12 return 0;
13 }

Answer

1 14,1

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 23 / 71

Introduction C++ Basics Data Structures Application Q & A

Vector (Cont.)

resize (),reserve ()

1 vector <int > lst = {2,0,2,5};
2 lst.reserve (8);
3 printf ("%ld ,%ld ,%d\n",lst.size (),lst.capacity (),lst.back ());
4 lst.reserve (6);
5 printf ("%ld ,%ld ,%d\n",lst.size (),lst.capacity (),lst.back ());
6 lst.resize (10 ,3);
7 printf ("%ld ,%ld ,%d\n",lst.size (),lst.capacity (),lst.back ());
8 lst.resize (3,5);
9 printf ("%ld ,%ld ,%d\n",lst.size (),lst.capacity (),lst.back ());

Answer

1 4,8,5
2 4,8,5
3 10,10,3
4 3,10,2

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 24 / 71

Introduction C++ Basics Data Structures Application Q & A

Vector (Cont.)

resize (),reserve ()

1 vector <int > lst = {2,0,2,5};
2 lst.reserve (8);
3 printf ("%ld ,%ld ,%d\n",lst.size (),lst.capacity (),lst.back ());
4 lst.reserve (6);
5 printf ("%ld ,%ld ,%d\n",lst.size (),lst.capacity (),lst.back ());
6 lst.resize (10 ,3);
7 printf ("%ld ,%ld ,%d\n",lst.size (),lst.capacity (),lst.back ());
8 lst.resize (3,5);
9 printf ("%ld ,%ld ,%d\n",lst.size (),lst.capacity (),lst.back ());

Answer

1 4,8,5
2 4,8,5
3 10,10,3
4 3,10,2

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 24 / 71

Introduction C++ Basics Data Structures Application Q & A

Stack/Queue

1 #include <stack >

2 #include <cstdio >

3 class CSC

4 {

5 private:

6 std::stack <int > s1,s2;

7 void tran () {while (!s1.empty ()) s2.push (s1.top ()),s1.pop ();}

8 public:

9 CSC () = default;

10 void add (int val) {s1.push (val);}

11 int del ()

12 {

13 if (s2.empty ())

14 {

15 if (s1.empty ()) return -1;

16 tran ();

17 }

18 int val = s2.top ();s2.pop ();

19 return val;

20 }

21 };

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 25 / 71

Introduction C++ Basics Data Structures Application Q & A

Stack/Queue (Cont.)

1 int main ()
2 {
3 CSC arr;
4 for (int i = 1;i <= 5;++i) arr.add (i);
5 for (int i = 0;i <= 5;++i)
6 {
7 printf ("%d",arr.del ());
8 if (i != 5) printf (",");
9 }

10 printf ("\n");
11 return 0;
12 }

Answer

1 1,2,3,4,5,-1

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 26 / 71

Introduction C++ Basics Data Structures Application Q & A

Stack/Queue (Cont.)

1 int main ()
2 {
3 CSC arr;
4 for (int i = 1;i <= 5;++i) arr.add (i);
5 for (int i = 0;i <= 5;++i)
6 {
7 printf ("%d",arr.del ());
8 if (i != 5) printf (",");
9 }

10 printf ("\n");
11 return 0;
12 }

Answer

1 1,2,3,4,5,-1

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 26 / 71

Introduction C++ Basics Data Structures Application Q & A

Stack/Queue (Cont.)

Sliding Window

1 void calc ()
2 {
3 int q[1005] = {0},num[] = {1,2,7,3,8,5,2,9};
4 int k = 3,n = 8,head = 0,tail = -1;
5 for (int i = 0;i < n;++i)
6 {
7 while (head <= tail && q[head] <= i - k) ++head;
8 while (head <= tail && num[q[tail]] <= num[i]) --tail;
9 q[++ tail] = i;

10 if (i >= k - 1) printf ("%d",num[q[head]]);
11 }
12 printf ("\n");
13 }

Answer (Hint: It also can be implemented with std::deque.)

1 778889

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 27 / 71

Introduction C++ Basics Data Structures Application Q & A

Stack/Queue (Cont.)

Sliding Window

1 void calc ()
2 {
3 int q[1005] = {0},num[] = {1,2,7,3,8,5,2,9};
4 int k = 3,n = 8,head = 0,tail = -1;
5 for (int i = 0;i < n;++i)
6 {
7 while (head <= tail && q[head] <= i - k) ++head;
8 while (head <= tail && num[q[tail]] <= num[i]) --tail;
9 q[++ tail] = i;

10 if (i >= k - 1) printf ("%d",num[q[head]]);
11 }
12 printf ("\n");
13 }

Answer (Hint: It also can be implemented with std::deque.)

1 778889

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 27 / 71

Introduction C++ Basics Data Structures Application Q & A

Stack/Queue (Cont.)

Circular Queue

Empty head == tail;

Full (tail + 1) % capacity == front;

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 28 / 71

Introduction C++ Basics Data Structures Application Q & A

Link list

Version 1

1 LinkNode* func (LinkNode* head)
2 {
3 LinkNode* pre = nullptr;
4 LinkNode* cur = head;
5 LinkNode* nxt = nullptr;
6 while (cur != nullptr)
7 {
8 nxt = cur -> next;
9 cur -> next = pre;

10 pre = cur;cur = nxt;
11 }
12 return pre;
13 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 29 / 71

Introduction C++ Basics Data Structures Application Q & A

Link list (Cont.)

Version 2

1 LinkNode* func (LinkNode* head)
2 {
3 if (head == nullptr || head -> next == nullptr) return head;
4 LinkNode* new_head = func (head -> next);
5 head -> next -> next = head;
6 head -> next = nullptr;
7 return new_head;
8 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 30 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures
Sequence Containers
Associative Containers
Tree

4 Application

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 31 / 71

Introduction C++ Basics Data Structures Application Q & A

Map

Hashmap

1 #define TABLE_SIZE 7
2 struct HashTable {int table[TABLE_SIZE];};
3 int hashFunction (int key) {return key % TABLE_SIZE ;}
4 void insert(int table[],int key)
5 {
6 int id = hashFunction (key);
7 while (table[id] != -1) id = (id + 1) % TABLE_SIZE;
8 table[id] = key;
9 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 32 / 71

Introduction C++ Basics Data Structures Application Q & A

Map (Cont.)

1. The following keys are inserted in order:{7, 14, 21, 28, 35, 42}. After
inserting all keys, what is the average successful search length (average number
of comparisons to find an existing key)?

A) 2.0
B) 2.5
C) 3.0
D) 3.5

2. In the worst-case scenario for linear probing, inserting n elements into a
table of size n requires?

A) O(n) time per insertion
B) O(log n) time per insertion
C) O(n log n) total time for all insertions
D) O(n2) total time for all insertions

Answer

1 D;AD

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 33 / 71

Introduction C++ Basics Data Structures Application Q & A

Map (Cont.)

1. The following keys are inserted in order:{7, 14, 21, 28, 35, 42}. After
inserting all keys, what is the average successful search length (average number
of comparisons to find an existing key)?

A) 2.0
B) 2.5
C) 3.0
D) 3.5

2. In the worst-case scenario for linear probing, inserting n elements into a
table of size n requires?

A) O(n) time per insertion
B) O(log n) time per insertion
C) O(n log n) total time for all insertions
D) O(n2) total time for all insertions

Answer

1 D;AD

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 33 / 71

Introduction C++ Basics Data Structures Application Q & A

Set

Bitset

1 const int RANGE_SIZE = 128;
2 const int BITS_PER_BYTE = 8;
3 const int BITS_PER_LONG = BITS_PER_BYTE * sizeof(long);
4 const int CVEC_WORDS = (RANGE_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG;
5 struct BitSet
6 {
7 unsigned long words[CVEC_WORDS];
8 BitSet ()
9 {

10 for (int i = 0;i < CVEC_WORDS ;++i) words[i] = 0;
11 }
12 };
13 unsigned long createMask (int k)
14 {
15 unsigned long x = 1L;
16 return x << k % BITS_PER_LONG;
17 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 34 / 71

Introduction C++ Basics Data Structures Application Q & A

Set (Cont.)

1 // check if the k-th characters in ASCII table in the Set
2 bool inSet(BitSet &cv, int k)
3 {
4 if (k < 0 || k >= RANGE_SIZE) return;
5 return cv.words[k / BITS_PER_LONG] & createMask (k);
6 }
7 // set the k-th character in ASCII table to the set
8 void setBit(BitSet &cv, int k)
9 {

10 if (k < 0 || k >= RANGE_SIZE) return;
11 cv.words[k / BITS_PER_LONG] |= createMask (k);
12 }
13 // remove the k-th characters in ASCII Table from the set
14 void remove(BitSet &cv, int k)
15 {
16 if (k < 0 || k >= RANGE_SIZE) return;
17 cv.words[k / BITS_PER_LONG] &= ~createMask (k);
18 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 35 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures
Sequence Containers
Associative Containers
Tree

4 Application

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 36 / 71

Introduction C++ Basics Data Structures Application Q & A

Binary Tree

Three Tree Traversal Methods

• Preorder Traversal Root → Left → Right
• Inorder Traversal Left → Root → Right
• Postorder Traversal Left → Right → Root

Question

Preorder traversal 1, 2, 4, 8, 5, 9, 3, 6, 10, 7
Inorder traversal 8, 4, 2, 9, 5, 1, 6, 10, 3, 7
Based on the given preorder and inorder traversals, what is the
postorder traversal?

Answer
8, 4, 9, 5, 2, 10, 6, 7, 3, 1

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 37 / 71

Introduction C++ Basics Data Structures Application Q & A

Binary Tree

Three Tree Traversal Methods

• Preorder Traversal Root → Left → Right
• Inorder Traversal Left → Root → Right
• Postorder Traversal Left → Right → Root

Question

Preorder traversal 1, 2, 4, 8, 5, 9, 3, 6, 10, 7
Inorder traversal 8, 4, 2, 9, 5, 1, 6, 10, 3, 7
Based on the given preorder and inorder traversals, what is the
postorder traversal?

Answer
8, 4, 9, 5, 2, 10, 6, 7, 3, 1

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 37 / 71

Introduction C++ Basics Data Structures Application Q & A

Binary Tree (Cont.)

1 int find (int x)
2 {
3 for (int i = 0;i < n;++i)
4 if (in[i] == x) return i;
5 return -1;
6 }
7 void getpost (int sl,int sr ,int fl ,int fr)
8 {
9 if (sl > sr || fl > fr) return;

10 int k = find (__1__);
11 getpost (__2__); getpost (__3__);
12 printf ("%d\n",pre[sl]);
13 }
14 void solve () {getpost (0,n - 1,0,n - 1);}

Answer

1 pre[sl]
2 sl + 1,sl + k - fl ,fl ,k - 1
3 sl + k - fl + 1,sr ,k + 1,fr

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 38 / 71

Introduction C++ Basics Data Structures Application Q & A

Binary Tree (Cont.)

1 int find (int x)
2 {
3 for (int i = 0;i < n;++i)
4 if (in[i] == x) return i;
5 return -1;
6 }
7 void getpost (int sl,int sr ,int fl ,int fr)
8 {
9 if (sl > sr || fl > fr) return;

10 int k = find (__1__);
11 getpost (__2__); getpost (__3__);
12 printf ("%d\n",pre[sl]);
13 }
14 void solve () {getpost (0,n - 1,0,n - 1);}

Answer

1 pre[sl]
2 sl + 1,sl + k - fl ,fl ,k - 1
3 sl + k - fl + 1,sr ,k + 1,fr

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 38 / 71

Introduction C++ Basics Data Structures Application Q & A

BST

1 struct TreeNode
2 {
3 int key ,sz ,cnt;
4 TreeNode *left ,* right;
5 TreeNode (int val) :
6 key (val), sz (1), cnt (1), left (nullptr), right (nullptr) {}
7 };

1 bool search (TreeNode* u,int val)
2 {
3 if (u == nullptr) return false;
4 if (u -> key == val) return true;
5 else if (val < u -> key) return search (rt -> left ,val);
6 else return search (rt -> right ,val);
7 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 39 / 71

Introduction C++ Basics Data Structures Application Q & A

BST (Cont.)

1 int get_sz (TreeNode* u) {return u == nullptr ? 0 : u -> size;}
2 TreeNode* insert (TreeNode* u, int val)
3 {
4 if (u == nullptr) return new TreeNode (val);
5 if (val < u -> key) u -> left = insert (u -> left ,val);
6 else if (val > u -> key) u -> right = insert (u -> right ,val);
7 else ++(u -> cnt);
8 u -> sz = u -> cnt + get_sz (u -> left) + get_sz (u -> right);
9 return u;

10 }

1 TreeNode* findMinNode (TreeNode* u)
2 {
3 while (u -> left != nullptr) u = u -> left;
4 return u;
5 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 40 / 71

Introduction C++ Basics Data Structures Application Q & A

BST (Cont.)

1 TreeNode* remove (TreeNode* u,int val)
2 {
3 if (u == nullptr) return u;
4 if (val < u -> key) u -> left = remove (u -> left ,val);
5 else if (val > u -> key) u -> right = remove (u -> right ,val);
6 else
7 {
8 if (u -> cnt > 1) {--(rt -> cnt); return ;}
9 if (u -> left != nullptr && u -> right != nullptr)

10 {
11 TreeNode* nxt = findMinNode (u -> right);
12 u -> key = nxt -> key;u -> cnt = nxt -> cnt;nxt -> cnt = 1;
13 u -> right = remove (u -> right ,nxt -> key);
14 }
15 else
16 {
17 TreeNode *tmp = u;
18 u = (u -> left != nullptr) ? u -> left : u -> right;
19 delete tmp;return u;
20 }
21 }
22 u -> sz = u -> cnt + get_sz (u -> left) + get_sz (u -> right);
23 return u;
24 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 41 / 71

Introduction C++ Basics Data Structures Application Q & A

BST (Cont.)

1 int queryRank (TreeNode* u,int val)
2 {
3 if (u == nullptr) return;
4 if (v == u -> key) return get_sz (u -> left) + 1;
5 else if (v < u -> key) return queryRank (u -> left ,val);
6 return queryRank (u -> right ,val) + get_sz (u -> left) + u -> cnt;
7 }

1 int querykth (TreeNode* u,int k)
2 {
3 if (u == nullptr) return -1;
4 if (u -> left)
5 {
6 if (u -> left -> sz >= k) return querykth (u -> left ,k);
7 if (u -> left -> sz + u -> cnt >= k) return u -> key;
8 }
9 else if (k <= u -> cnt) return u -> cnt;

10 return querykth (u -> right ,k - get_sz (u -> left) - u -> cnt);
11 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 42 / 71

Introduction C++ Basics Data Structures Application Q & A

AVL Tree

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 43 / 71

Introduction C++ Basics Data Structures Application Q & A

AVL Tree (Cont.)

1 avl_node* R_rotate (avl_node* u)
2 {
3 avl_node* x = u -> L;avl_node* y = x -> R;
4 x -> R = u;u -> L = y;
5 x -> fat = u -> fat;
6 u -> fat = x;
7 if (y != nullptr) y -> fat = u;
8 u -> upd ();x -> upd ();
9 return x;

10 }
11 avl_node* L_rotate (avl_node* u)
12 {
13 avl_node* x = u -> R;avl_node* y = x -> L;
14 x -> L = u;u -> R = y;
15 x -> fat = u -> fat;
16 u -> fat = x;
17 if (y != nullptr) y -> fat = u;
18 u -> upd ();x -> upd ();
19 return x;
20 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 44 / 71

Introduction C++ Basics Data Structures Application Q & A

AVL Tree (Cont.)

1 avl_node* LR_rotate (avl_node* u) {u -> L = L_rotate (u -> L); return R_rotate (u);}
2 avl_node* RL_rotate (avl_node* u) {u -> R = R_rotate (u -> R); return L_rotate (u);}
3 int height (avl_node* u) const {return u ? u -> dep : -1;}
4 int calc (avl_node* u) const {return !u ? 0 : height (u -> L) - height (u -> R);}
5 avl_node* balance (avl_node* u)
6 {
7 if (u == nullptr) return nullptr;
8 int fac = calc (u);
9 if (fac > 1)

10 {
11 if (calc (u -> L) >= 0) return R_rotate (u);
12 u -> L = L_rotate (u -> L);
13 return R_rotate (u);
14 }
15 else if (fac < -1)
16 {
17 if (calc (u -> R) <= 0) return L_rotate (u);
18 u -> R = R_rotate (u -> R);
19 return L_rotate (u);
20 }
21 return u;
22 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 45 / 71

Introduction C++ Basics Data Structures Application Q & A

Red-Black Tree

Key Characteristics of RB Trees

• Binary Search Tree Property

• Color Rules

• Every node is either red or black
• Root is always black
• All leaves (NIL nodes) are black

• Red Node Constraint

• No two consecutive red nodes

• Black Height Property

• Every path from root to leaf has
the same number of black nodes
• Ensures tree remains balanced

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 46 / 71

Introduction C++ Basics Data Structures Application Q & A

Red-Black Tree (Cont.)

Theorem
For a red-black tree with n nodes, its height h satisfies
h ≤ 2 log2(n + 1).

Proof
Let bh be the black height of a RB tree.
Then we have n ≥ 2bh − 1 and h ≤ 2bh.
So we can conclude h ≤ 2bh ≤ log2(n + 1).

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 47 / 71

Introduction C++ Basics Data Structures Application Q & A

Heap

Heap Construction

T (n) = 1 × (H − 1) + 2 × (H − 2) + · · ·+ 2H−1 × 0

= 2H − H − 1 = O(n)

1 void down (int *a,int n,int i)
2 {
3 int pos = i,l = 2 * i + 1,r = 2 * i + 2;
4 if (l < n && a[l] > a[pos]) pos = l;
5 if (r < n && a[r] > a[pos]) pos = i;
6 if (pos != i) swap (a[i],a[pos]),down (a,n,pos);
7 }
8 void build () // Default: max -heap
9 {

10 for (int i = a.size () / 2 - 1;i >= 0;--i) down (a,a.size (),i);
11 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 48 / 71

https://cdn4.winhlb.com/2025/12/04/69310e63d03a9.gif

Introduction C++ Basics Data Structures Application Q & A

Heap (Cont.)

Insert
1 void up (int *a,int id)
2 {
3 int fa = (id - 1) / 2;
4 while (id > 0 && a[id] > a[fa])
5 {swap (a[id],a[fa]);id = fa;fa = (id - 1) / 2;}
6 }
7 void insert (int val)
8 {
9 if (n == _MAX_SIZE) return;

10 a[n] = val;++n;up (a,n);
11 }

Delete
1 void del (int *a,int n)
2 {
3 if (n <= 0) return;
4 swap (a[0],a[n]);--n;down (a,n,0);
5 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 49 / 71

https://cdn4.winhlb.com/2025/12/04/6931121450aa2.gif
https://cdn4.winhlb.com/2025/12/04/6931121450558.gif

Introduction C++ Basics Data Structures Application Q & A

Heap (Cont.)

Q1. Given the keyword sequence 5, 8, 12, 19, 28, 20, 15, 22 is a
min-heap, after inserting keyword 3 and performing heap adjustment, the
resulting min-heap is:

A) 3, 5, 12, 8, 28, 20, 15, 22, 19

B) 3, 5, 12, 19, 20, 15, 22, 8, 28

C) 3, 8, 12, 5, 20, 15, 22, 28, 19

D) 3, 12, 5, 8, 28, 20, 15, 22, 19

Answer

1 A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 50 / 71

Introduction C++ Basics Data Structures Application Q & A

Heap (Cont.)

Q1. Given the keyword sequence 5, 8, 12, 19, 28, 20, 15, 22 is a
min-heap, after inserting keyword 3 and performing heap adjustment, the
resulting min-heap is:

A) 3, 5, 12, 8, 28, 20, 15, 22, 19

B) 3, 5, 12, 19, 20, 15, 22, 8, 28

C) 3, 8, 12, 5, 20, 15, 22, 28, 19

D) 3, 12, 5, 8, 28, 20, 15, 22, 19

Answer

1 A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 50 / 71

Introduction C++ Basics Data Structures Application Q & A

Heap (Cont.)

Q2. Which of the following statements about a max-heap (containing at least
2 elements) is/are correct?

I. A heap can be viewed as a complete binary tree.

II. A heap can be stored using sequential (array-based) storage.

III. A heap can be viewed as a binary search tree.

IV. The second largest element in the heap must be in the level directly
below the root.

A) I and II only

B) II and III only

C) I, II, and IV only

D) I, III, and IV only

Answer

1 C

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 51 / 71

Introduction C++ Basics Data Structures Application Q & A

Heap (Cont.)

Q2. Which of the following statements about a max-heap (containing at least
2 elements) is/are correct?

I. A heap can be viewed as a complete binary tree.

II. A heap can be stored using sequential (array-based) storage.

III. A heap can be viewed as a binary search tree.

IV. The second largest element in the heap must be in the level directly
below the root.

A) I and II only

B) II and III only

C) I, II, and IV only

D) I, III, and IV only

Answer

1 C

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 51 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures

4 Application
Complexity
Sort
Graph Traversal
Shortest-Path
Topological Sort

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 52 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures

4 Application
Complexity
Sort
Graph Traversal
Shortest-Path
Topological Sort

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 53 / 71

Introduction C++ Basics Data Structures Application Q & A

Complexity

Complexity Name Example
O(1) Constant Array access

O(log n) Logarithmic Binary search
O(n) Linear Linear search

O(n log n) Log-linear Merge sort
O(n2) Quadratic Bubble sort
O(n3) Cubic Matrix multiplication
O(2n) Exponential Subset enumeration

Growth Rates:

O(1) ≤ O(log n) ≤ O(n) ≤ O(n log n) ≤ O(n2) ≤ O(n3) ≤ O(2n)

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 54 / 71

Introduction C++ Basics Data Structures Application Q & A

Complexity (Cont.)

Time Complexity Analysis

1 for (int i = 1;i <= n;++i)
2 for (int j = 1;j <= n / 2;++j) ++cnt;
3 for (int i = 1;i <= n;i *= 2)
4 for (int j = 1;j <= n;++j) ++cnt;
5 for (int i = 1;i <= n;i *= 2)
6 for (int j = 1;j <= i;++j) ++cnt;
7 for (int i = 1;i <= n;++i)
8 for (int j = 1;j <= n / i;++j) ++cnt;

Answer
O(n2),O(n log n),O(n),O(n log n)

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 55 / 71

Introduction C++ Basics Data Structures Application Q & A

Complexity (Cont.)

Time Complexity Analysis

1 for (int i = 1;i <= n;++i)
2 for (int j = 1;j <= n / 2;++j) ++cnt;
3 for (int i = 1;i <= n;i *= 2)
4 for (int j = 1;j <= n;++j) ++cnt;
5 for (int i = 1;i <= n;i *= 2)
6 for (int j = 1;j <= i;++j) ++cnt;
7 for (int i = 1;i <= n;++i)
8 for (int j = 1;j <= n / i;++j) ++cnt;

Answer
O(n2),O(n log n),O(n),O(n log n)

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 55 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures

4 Application
Complexity
Sort
Graph Traversal
Shortest-Path
Topological Sort

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 56 / 71

Introduction C++ Basics Data Structures Application Q & A

Sort

1 void Bubble_Sort () {
2 for (int i = 0; i < n;++i)
3 for (int j = 0;j < n - i - 1;++j)
4 if (a[j] > a[j + 1]) swap (a[j],a[j + 1]);
5 }
6 void Selection_Sort () {
7 for (int i = 0;i < n;++i)
8 {
9 int minIndex = i;

10 for (int j = i + 1;j < n;++j)
11 if (a[j] < a[minIndex]) minIndex = j;
12 swap (a[minIndex],a[i]);
13 }
14 }
15 void Insertion_Sort () {
16 for (int i = 1;i < n;++i)
17 {
18 int key = a[i],j = i - 1;
19 while (j >= 0 && a[j] > key) a[j + 1] = a[j],--j;
20 a[j + 1] = key;
21 }
22 }

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 57 / 71

Introduction C++ Basics Data Structures Application Q & A

Sort (Cont.)

1 template <typename T>
2 void Merge_Sort (T a[],int l,int r)
3 {
4 if (l >= r) return;
5 int mid = (l + r) / 2;
6 Merge_Sort (a,l,mid); Merge_Sort (a,mid + 1,r);
7 vector <T> lst;
8 int posl = l,posr = mid + 1;
9 while (posl <= mid && posr <= r)

10 {
11 if (a[posl] <= a[posr]) lst.push_back (a[posl ++]);
12 else lst.push_back (a[posr ++]);
13 }
14 while (posl <= mid) lst.push_back (a[posl ++]);
15 while (posr <= r) lst.push_back (a[posr ++]);
16 for (int i = l;i <= r;++i) a[i] = lst[i - l];
17 }
18 Merge_Sort (a,0,n - 1);

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 58 / 71

Introduction C++ Basics Data Structures Application Q & A

Sort (Cont.)

1 template <typename T>
2 int partition (T a[],int l,int r)
3 {
4 int pivot = a[l];
5 while (l < r)
6 {
7 while (l < r && pivot <= a[r]) --r;
8 a[l] = a[r];
9 while (l < r && a[l] <= pivot) ++l;

10 a[r] = a[l];
11 }
12 a[l] = pivot;
13 return l;
14 }
15 template <typename T>
16 void Quick_Sort (T a[],int l,int r)
17 {
18 if (l >= r) return;
19 int pivot = partition (a,l,r);
20 Quick_Sort (a,l,pivot - 1); Quick_Sort (a,pivot + 1,r);
21 }
22 Quick_Sort (a,0,n - 1);

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 59 / 71

Introduction C++ Basics Data Structures Application Q & A

Sort (Cont.)

The Complexity of Different Sort Algorithms

Algorithm Best Average Worst
Selection Sort O(n2) O(n2) O(n2)

Insertion Sort O(n) O(n2) O(n2)

Bubble Sort O(n) O(n2) O(n2)

Merge Sort O(n log n) O(n log n) O(n log n)

Quick Sort O(n log n) O(n log n) O(n2)

Heap Sort O(n log n) O(n log n) O(n log n)

BST Tree Sort O(n log n) O(n log n) O(n2)

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 60 / 71

https://visualgo.net/en/sorting

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures

4 Application
Complexity
Sort
Graph Traversal
Shortest-Path
Topological Sort

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 61 / 71

Introduction C++ Basics Data Structures Application Q & A

Graph

A

B

C

D

Adjacency List : O(|V |+ |E |).

A: B C ×

B: A C ×

C: A B D ×

D: C ×

Adjacency Matrix : O(|V |2).
0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0



Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 62 / 71

Introduction C++ Basics Data Structures Application Q & A

DFS/BFS

Visualization

Algorithm 1 DFS
procedure search(u)

mark u as vis
for each neighbor v of u do

if v is not vis then
serach(v)

end if
end for

end procedure

Algorithm 2 BFS
procedure search(source)

Q ← new Queue()
Q.enqueue(source)
while Q not empty do

u ← Q.dequeue()
for each neighbor v of u do

if v is not vis then
mark v as vis
Q.enqueue(v)

end if
end for

end while
end procedure

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 63 / 71

https://visualgo.net/en/dfsbfs

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures

4 Application
Complexity
Sort
Graph Traversal
Shortest-Path
Topological Sort

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 64 / 71

Introduction C++ Basics Data Structures Application Q & A

Unweighted Shortest-Path

A

B

C

D

E

F

Algorithm 3 0-1 BFS
procedure calc(source, graph)

Q ← new Queue()
dist ← new Dictionary()
Q.enqueue(source)
dist[source]← 0
while Q is not empty do

u ← Q.dequeue()
for each neighbor v of u in graph do

if v is not in dist then
dist[v]← dist[u] + 1
Q.enqueue(v)

end if
end for

end while
return dist

end procedure

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 65 / 71

Introduction C++ Basics Data Structures Application Q & A

Weighted Shortest-Path

A

B

C

D

E

F

4

1

2

2

7

2

5

Algorithm 4 Dijkstra
procedure calc(source, graph)

dist ← array of size |V |, initialized to ∞
vis ← boolean array of size |V |, initialized to false
dist[source]← 0
for i ← 1 to |V | do

u ← vertex with minimum dist not vis
vis[u]← true
for each neighbor v of u with weight w do

if not vis[v] and dist[u]+w < dist[v] then
dist[v]← dist[u] + w

end if
end for

end for
return dist

end procedure

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 66 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures

4 Application
Complexity
Sort
Graph Traversal
Shortest-Path
Topological Sort

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 67 / 71

Introduction C++ Basics Data Structures Application Q & A

Topological Sort

Algorithm 5 Topological Sort
procedure Search(G(V , E))

indeg [|V |]← 0, q ← ∅, ord ← ∅
for (u, v) ∈ E do indeg [v]← indeg [v] + 1
end for
for v ∈ V do

if indeg [v] = 0 then q.push(v)
end if

end for
while q ̸= ∅ do

u ← q.pop(), ord .push(u)
for v ∈ adj[u] do

indeg [v]← indeg [v]− 1
if indeg [v] = 0 then q.push(v)
end if

end for
end while
if |ord| ̸= |V | then return ∅
end if
return ord

end procedure

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 68 / 71

Introduction C++ Basics Data Structures Application Q & A

1 Introduction

2 C++ Basics

3 Data Structures

4 Application

5 Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 69 / 71

Introduction C++ Basics Data Structures Application Q & A

Q & A

Q & A

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 70 / 71

Thanks for listening!

Good Luck on Your Final Exams!

Chaoyi Sun CUHK-Shenzhen Programming Contest Team

CSC3200 Final Review 71 / 71

	Introduction
	C++ Basics
	Variable
	Memory
	Pointer

	Data Structures
	Sequence Containers
	Associative Containers
	Tree

	Application
	Complexity
	Sort
	Graph Traversal
	Shortest-Path
	Topological Sort

	Q & A
	附录

